login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. A = A(x,m) satisfies: cn(A + x, m) + sn(A - x, m) = 1, where sn(x,m) and cn(x,m) are Jacobi elliptic functions with parameter m, as an irregular triangle of coefficients read by rows.
1

%I #16 Sep 13 2018 16:18:45

%S 1,4,24,0,224,-64,2880,-1920,0,48064,-49984,1024,989184,-1365504,

%T 129024,0,24218624,-40854528,8583168,-16384,687083520,-1352540160,

%U 471859200,-8355840,0,22151148544,-49507063808,24589796352,-1331806208,262144,799546834944,-1993321955328,1286051069952,-141582532608,536346624,0,31934834253824,-87721489006592,69349000355840,-12549922078720,198078103552,-4194304

%N E.g.f. A = A(x,m) satisfies: cn(A + x, m) + sn(A - x, m) = 1, where sn(x,m) and cn(x,m) are Jacobi elliptic functions with parameter m, as an irregular triangle of coefficients read by rows.

%H Paul D. Hanna, <a href="/A319145/b319145.txt">Table of n, a(n) for n = 1..930, for rows 1..60 of this triangle in flattened form.</a>

%F E.g.f. A = A(x,m) = Sum_{n>=1} Sum_{k=0..floor((n-1)/2)} T(n,k)*x^n*m^k/n! satisfies:

%F (1) A(-A(-x, m), m) = x.

%F (2) 1 = cn(A + x, m) + sn(A - x, m).

%F (3) (cn(A) + sn(A)*dn(x)) * (cn(x) - sn(x)*dn(A)) = 1 - m*sn(x)^2*sn(A)^2, where parameter m is implicit.

%e E.g.f.: A(x,m) = x + 4*x^2/2! + 24*x^3/3! + (-64*m + 224)*x^4/4! + (-1920*m + 2880)*x^5/5! + (1024*m^2 - 49984*m + 48064)*x^6/6! + (129024*m^2 - 1365504*m + 989184)*x^7/7! + (-16384*m^3 + 8583168*m^2 - 40854528*m + 24218624)*x^8/8! + (-8355840*m^3 + 471859200*m^2 - 1352540160*m + 687083520)*x^9/9! + (262144*m^4 - 1331806208*m^3 + 24589796352*m^2 - 49507063808*m + 22151148544)*x^10/10! + (536346624*m^4 - 141582532608*m^3 + 1286051069952*m^2 - 1993321955328*m + 799546834944)*x^11/11! + (-4194304*m^5 + 198078103552*m^4 - 12549922078720*m^3 + 69349000355840*m^2 - 87721489006592*m + 31934834253824)*x^12/12! + ...

%e such that cn(A + x, m) + sn(A - x, m) = 1.

%e This triangle of coefficients of x^n*m^k/n! in A(x,m) begins

%e 1;

%e 4;

%e 24, 0;

%e 224, -64;

%e 2880, -1920, 0;

%e 48064, -49984, 1024;

%e 989184, -1365504, 129024, 0;

%e 24218624, -40854528, 8583168, -16384;

%e 687083520, -1352540160, 471859200, -8355840, 0;

%e 22151148544, -49507063808, 24589796352, -1331806208, 262144;

%e 799546834944, -1993321955328, 1286051069952, -141582532608, 536346624, 0;

%e 31934834253824, -87721489006592, 69349000355840, -12549922078720, 198078103552, -4194304; ...

%e RELATED SERIES.

%e cn(A(x,m) + x, m) = 1 - 4*x^2/2! - 24*x^3/3! + (64*m - 224)*x^4/4! + (1920*m - 2880)*x^5/5! + (-1024*m^2 + 50944*m - 47104)*x^6/6! + (-129024*m^2 + 1405824*m - 948864)*x^7/7! + (16384*m^3 - 8798208*m^2 + 42037248*m - 22820864)*x^8/8! + (8355840*m^3 - 491212800*m^2 + 1381570560*m - 638699520)*x^9/9! + (-262144*m^4 + 1367932928*m^3 - 25781010432*m^2 + 50035417088*m - 20383842304)*x^10 + ...

%e sn(A(x,m) - x, m) = 1 - cn(A(x,m) + x, m) = 4*x^2/2! + 24*x^3/3! + (-64*m + 224)*x^4/4! + (-1920*m + 2880)*x^5/5! + (1024*m^2 - 50944*m + 47104)*x^6/6! + (129024*m^2 - 1405824*m + 948864)*x^7/7! + ...

%e Related Jacobi elliptic functions with parameter m begin:

%e sn(x,m) = x + (-m - 1)*x^3/3! + (m^2 + 14*m + 1)*x^5/5! + (-m^3 - 135*m^2 - 135*m - 1)*x^7/7! + (m^4 + 1228*m^3 + 5478*m^2 + 1228*m + 1)*x^9/9! + (-m^5 - 11069*m^4 - 165826*m^3 - 165826*m^2 - 11069*m - 1)*x^11/11! + ...

%e cn(x,m) = 1 - x^2/2! + (4*m + 1)*x^4/4! + (-16*m^2 - 44*m - 1)*x^6/6! + (64*m^3 + 912*m^2 + 408*m + 1)*x^8/8! + (-256*m^4 - 15808*m^3 - 30768*m^2 - 3688*m - 1)*x^10/10! + (1024*m^5 + 259328*m^4 + 1538560*m^3 + 870640*m^2 + 33212*m + 1)*x^12/12! + ...

%e dn(x,m) = 1 - m*x^2/2! + (m^2 + 4*m)*x^4/4! + (-m^3 - 44*m^2 - 16*m)*x^6/6! + (m^4 + 408*m^3 + 912*m^2 + 64*m)*x^8/8! + (-m^5 - 3688*m^4 - 30768*m^3 - 15808*m^2 - 256*m)*x^10/10! + (m^6 + 33212*m^5 + 870640*m^4 + 1538560*m^3 + 259328*m^2 + 1024*m)*x^12/12! + ...

%o (PARI) {T(n,k) = my(A=[1],S=x,C=1,D=1); for(i=0, n,

%o S = intformal(C*D +x*O(x^n));

%o C = 1 - intformal(S*D) ;

%o D = 1 - m*intformal(S*C); );

%o for(i=1,n, A=concat(A,0);

%o A[#A] = -Vec( subst(C,x,x*Ser(A) + x) + subst(S,x,x*Ser(A) - x) )[#A+1] );

%o n!*polcoeff(polcoeff(A,n,x),k,m)}

%o /* Print as a triangle: */

%o for(n=1,12,for(k=0,(n-1)\2,print1(T(n,k),", "));print(""))

%Y Cf. A318005 (column 0).

%K sign,tabf

%O 1,2

%A _Paul D. Hanna_, Sep 11 2018