login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026920
Triangular array O by rows: O(n,k) = number of partitions of n into an odd number of parts, the greatest being k.
6
1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 1, 3, 1, 1, 0, 1, 0, 2, 2, 3, 1, 1, 0, 1, 1, 2, 4, 3, 3, 1, 1, 0, 1, 0, 3, 3, 5, 3, 3, 1, 1, 0, 1, 1, 2, 6, 5, 6, 3, 3, 1, 1, 0, 1, 0, 3, 5, 8, 6, 6, 3, 3, 1, 1, 0, 1, 1, 3, 8, 8, 10, 7, 6, 3, 3, 1, 1, 0, 1, 0, 4, 7, 12, 10, 11, 7, 6, 3, 3, 1, 1, 0, 1
OFFSET
1,17
COMMENTS
The reversed rows (see example) stabilize to A027187. [Joerg Arndt, May 12 2013]
FORMULA
G.f.: sum(n>=0, q^(2*n+1)/prod(k=1..2*n+1, 1-z*q^k) ), setting z=1 gives g.f. for A027193. [Joerg Arndt, May 12 2013]
O(n,k) + A026921(n,k) = A008284(n,k). - R. J. Mathar, Aug 23 2019
EXAMPLE
G.f. = (0)*q^0 +
(1) * q^1
(0* + 1*z^1) * q^2
(1* + 0*z^1 + 1*z^2) * q^3
(0* + 1*z^1 + 0*z^2 + 1*z^3) * q^4
(1* + 1*z^1 + 1*z^2 + 0*z^3 + 1*z^4) * q^5
(0* + 2*z^1 + 1*z^2 + 1*z^3 + 0*z^4 + 1*z^5) * q^6
(1* + 1*z^1 + 3*z^2 + 1*z^3 + 1*z^4 + 0*z^5 + 1*z^6) * q^7
... [Joerg Arndt, May 12 2013]
Triangle starts:
01: [1]
02: [0, 1]
03: [1, 0, 1]
04: [0, 1, 0, 1]
05: [1, 1, 1, 0, 1]
06: [0, 2, 1, 1, 0, 1]
07: [1, 1, 3, 1, 1, 0, 1]
08: [0, 2, 2, 3, 1, 1, 0, 1]
09: [1, 2, 4, 3, 3, 1, 1, 0, 1]
10: [0, 3, 3, 5, 3, 3, 1, 1, 0, 1]
11: [1, 2, 6, 5, 6, 3, 3, 1, 1, 0, 1]
12: [0, 3, 5, 8, 6, 6, 3, 3, 1, 1, 0, 1]
13: [1, 3, 8, 8, 10, 7, 6, 3, 3, 1, 1, 0, 1]
14: [0, 4, 7, 12, 10, 11, 7, 6, 3, 3, 1, 1, 0, 1]
15: [1, 3, 11, 13, 16, 12, 12, 7, 6, 3, 3, 1, 1, 0, 1]
16: [0, 4, 9, 18, 17, 18, 13, 12, 7, 6, 3, 3, 1, 1, 0, 1]
17: [1, 4, 13, 19, 25, 21, 20, 14, 12, 7, 6, 3, 3, 1, 1, 0, 1]
18: [0, 5, 12, 24, 27, 30, 23, 21, 14, 12, 7, 6, 3, 3, 1, 1, 0, 1]
19: [1, 4, 17, 26, 37, 34, 34, 25, 22, 14, 12, 7, 6, 3, 3, 1, 1, 0, 1]
... [Joerg Arndt, May 12 2013]
PROG
(PARI)
N = 20; q = 'q + O('q^N);
gf = sum(n=0, N, q^(2*n+1)/prod(k=1, 2*n+1, 1-'z*q^k) );
v = Vec(gf);
{ for(n=1, #v, /* print triangle starting with row 1: */
p = Pol('c0 +'cn*'z^n + v[n], 'z);
p = polrecip(p);
p = Vec(p);
p[1] -= 'c0;
p = vector(#p-1, j, p[j]);
print(p);
); }
/* Joerg Arndt, May 12 2013 */
CROSSREFS
O(n, k) = E(n-k, 1)+E(n-k, 2)+...+E(n-k, m), where m=MIN{k, n-k}, n >= 2, E given by A026921.
Columns k=2..6: A026922, A026923, A026924, A026925, A026926.
Sequence in context: A206588 A302234 A345007 * A060763 A131576 A341675
KEYWORD
nonn,tabl
STATUS
approved