Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Aug 23 2019 04:51:13
%S 1,0,1,1,0,1,0,1,0,1,1,1,1,0,1,0,2,1,1,0,1,1,1,3,1,1,0,1,0,2,2,3,1,1,
%T 0,1,1,2,4,3,3,1,1,0,1,0,3,3,5,3,3,1,1,0,1,1,2,6,5,6,3,3,1,1,0,1,0,3,
%U 5,8,6,6,3,3,1,1,0,1,1,3,8,8,10,7,6,3,3,1,1,0,1,0,4,7,12,10,11,7,6,3,3,1,1,0,1
%N Triangular array O by rows: O(n,k) = number of partitions of n into an odd number of parts, the greatest being k.
%C The reversed rows (see example) stabilize to A027187. [_Joerg Arndt_, May 12 2013]
%F G.f.: sum(n>=0, q^(2*n+1)/prod(k=1..2*n+1, 1-z*q^k) ), setting z=1 gives g.f. for A027193. [_Joerg Arndt_, May 12 2013]
%F O(n,k) + A026921(n,k) = A008284(n,k). - _R. J. Mathar_, Aug 23 2019
%e G.f. = (0)*q^0 +
%e (1) * q^1
%e (0* + 1*z^1) * q^2
%e (1* + 0*z^1 + 1*z^2) * q^3
%e (0* + 1*z^1 + 0*z^2 + 1*z^3) * q^4
%e (1* + 1*z^1 + 1*z^2 + 0*z^3 + 1*z^4) * q^5
%e (0* + 2*z^1 + 1*z^2 + 1*z^3 + 0*z^4 + 1*z^5) * q^6
%e (1* + 1*z^1 + 3*z^2 + 1*z^3 + 1*z^4 + 0*z^5 + 1*z^6) * q^7
%e ... [_Joerg Arndt_, May 12 2013]
%e Triangle starts:
%e 01: [1]
%e 02: [0, 1]
%e 03: [1, 0, 1]
%e 04: [0, 1, 0, 1]
%e 05: [1, 1, 1, 0, 1]
%e 06: [0, 2, 1, 1, 0, 1]
%e 07: [1, 1, 3, 1, 1, 0, 1]
%e 08: [0, 2, 2, 3, 1, 1, 0, 1]
%e 09: [1, 2, 4, 3, 3, 1, 1, 0, 1]
%e 10: [0, 3, 3, 5, 3, 3, 1, 1, 0, 1]
%e 11: [1, 2, 6, 5, 6, 3, 3, 1, 1, 0, 1]
%e 12: [0, 3, 5, 8, 6, 6, 3, 3, 1, 1, 0, 1]
%e 13: [1, 3, 8, 8, 10, 7, 6, 3, 3, 1, 1, 0, 1]
%e 14: [0, 4, 7, 12, 10, 11, 7, 6, 3, 3, 1, 1, 0, 1]
%e 15: [1, 3, 11, 13, 16, 12, 12, 7, 6, 3, 3, 1, 1, 0, 1]
%e 16: [0, 4, 9, 18, 17, 18, 13, 12, 7, 6, 3, 3, 1, 1, 0, 1]
%e 17: [1, 4, 13, 19, 25, 21, 20, 14, 12, 7, 6, 3, 3, 1, 1, 0, 1]
%e 18: [0, 5, 12, 24, 27, 30, 23, 21, 14, 12, 7, 6, 3, 3, 1, 1, 0, 1]
%e 19: [1, 4, 17, 26, 37, 34, 34, 25, 22, 14, 12, 7, 6, 3, 3, 1, 1, 0, 1]
%e ... [_Joerg Arndt_, May 12 2013]
%o (PARI)
%o N = 20; q = 'q + O('q^N);
%o gf = sum(n=0,N, q^(2*n+1)/prod(k=1, 2*n+1, 1-'z*q^k) );
%o v = Vec(gf);
%o { for(n=1, #v, /* print triangle starting with row 1: */
%o p = Pol('c0 +'cn*'z^n + v[n],'z);
%o p = polrecip(p);
%o p = Vec(p);
%o p[1] -= 'c0;
%o p = vector(#p-1, j, p[j]);
%o print(p);
%o ); }
%o /* _Joerg Arndt_, May 12 2013 */
%Y O(n, k) = E(n-k, 1)+E(n-k, 2)+...+E(n-k, m), where m=MIN{k, n-k}, n >= 2, E given by A026921.
%Y Columns k=2..6: A026922, A026923, A026924, A026925, A026926.
%K nonn,tabl
%O 1,17
%A _Clark Kimberling_