login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k), read by rows, given by (1, -2, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
1

%I #10 Mar 10 2017 05:27:04

%S 1,1,1,-1,0,1,-1,-3,-1,1,1,0,-4,-2,1,1,5,4,-4,-3,1,-1,0,9,10,-3,-4,1,

%T -1,-7,-9,9,17,-1,-5,1,1,0,-16,-28,2,24,2,-6,1,1,9,16,-16,-54,-14,30,

%U 6,-7,1,-1,0,25,60,10

%N Triangle T(n,k), read by rows, given by (1, -2, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

%C Riordan array ((1+x)/(1+x^2), x*(1-x)/(1+x^2)).

%C Antidiagonal sums are A010892(n).

%H Indranil Ghosh, <a href="/A206831/b206831.txt">Rows 0..100, flattened</a>

%F T(n,k) = T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), n>1.

%F G.f.: (1+x)/(1-y*x+(1+y)*x^2).

%F Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A057077(n), (-1)^n*A078050(n) for x = -1, 0, 1 respectively.

%e Triangle begins :

%e 1

%e 1, 1

%e -1, 0, 1

%e -1, -3, -1, 1

%e 1, 0, -4, -2, 1

%e 1, 5, 4, -4, -3, 1

%e -1, 0, 9, 10, -3, -4, 1

%e -1, -7, -9, 9, 17, -1, -5, 1

%e 1, 0, -16, -28, 2, 24, 2, -6, 1

%e 1, 9, 16, -16, -54, -14, 30, 6, -7, 1

%e -1, 0, 25, 60, 10, -80, -40, 34, 11, -8, 1

%t nmax=10; Flatten[CoefficientList[Series[CoefficientList[Series[(1 + x)/(1 - y*x + (1 + y)*x^2), {x, 0, nmax}], x], {y, 0, nmax}], y]] (* _Indranil Ghosh_, Mar 10 2017 *)

%Y Cf. A129267, A007318, A147703, A147721

%Y Cf. A057077, A087960

%K easy,sign,tabl

%O 0,8

%A _Philippe Deléham_, Feb 13 2012