Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Mar 13 2014 07:15:15
%S 1,1,1,3,2,5,10,21,30,76,114,257,448,1052,1706,4093,6928,16284,28266,
%T 67580,116288,278582,488152,1168105,2060388,4959066,8772450,21133812,
%U 37675236,90901086,162659624,393382077,706479172,1710430178,3084264618,7477512244,13522121028
%N G.f. satisfies: A(x) = 1 + x*A(x)*A(-x) + x^2*A(x)/A(-x).
%H Paul D. Hanna, <a href="/A209199/b209199.txt">Table of n, a(n) for n = 0..300</a>
%F G.f. satisfies: 1 - x^4 - y + x^2*y + x^3*y^2 - (x*y^2)/(x^2 - y - x*y^2) = 0, where y = A(x). - _Vaclav Kotesovec_, Mar 13 2014
%F a(n) ~ (C(r,s1) - (-1)^n*C(-r,s2)) / (sqrt(Pi) * n^(3/2) * r^n), where {r1 = r = 0.45889975689289..., s1 = 3.7914195980097...} and {r2 = -r, s2 = 0.3725313335801...} are roots of the system of equations r^2*(1 + 2*r*s) = 1 + (2*r*s)/(r^2 - s - r*s^2) + (r*s^2*(1 + 2*r*s))/(-r^2 + s + r*s^2)^2, 1 + r^2*s + r^3*s^2 = r^4 + s + (r*s^2)/(r^2 - s - r*s^2), and C(r,s) = sqrt((r*s^2 - r^2 + s)*(4*r^7 - 11*r^6*s^2 - s^3 - 2*r*s^3 - 3*r^4*s^3*(s^3-6) + 10*r^5*s*(s^3-1) - 8*r^3*s^2*(s^3-1) - r^2*s^2*(7*s^2+1)) / (4*r*(r^7 - 3*r^6*s^2 + s^3 - r*s^3 - r^4*s^3*(s^3-6) + 3*r^5*s*(s^3-1) - 3*r^2*s^2*(s^2+1) + r^3*(3*s^2 - 3*s^5 - 1)))), C(r,s1) = 4.083478805997458527..., C(-r,s2) = 0.26836221180354127... - _Vaclav Kotesovec_, Mar 13 2014
%e G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 2*x^4 + 5*x^5 + 10*x^6 + 21*x^7 +...
%e Related series:
%e A(x)*A(-x) = 1 + x^2 - x^4 + 5*x^6 + 12*x^8 + 25*x^10 + 164*x^12 +...
%e A(x)/A(-x) = 1 + 2*x + 2*x^2 + 6*x^3 + 10*x^4 + 16*x^5 + 30*x^6 +...
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+x*A*subst(A,x,-x)+x^2*A/subst(A,x,-x+x*O(x^n)));polcoeff(A,n)}
%o for(n=0,40,print1(a(n),", "))
%Y Cf. A208889, A208887.
%K nonn
%O 0,4
%A _Paul D. Hanna_, Mar 08 2012