login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209200
G.f.: (1-4*x)^(-1/2) * (1-8*x)^(-1/4).
2
1, 4, 20, 112, 680, 4384, 29536, 205440, 1462368, 10587520, 77633920, 574845440, 4289409280, 32206976000, 243074083840, 1842511532032, 14018197145088, 106996519311360, 818973463721984, 6284217844736000, 48327723087278080, 372397083591557120
OFFSET
0,2
COMMENTS
Equals the convolution of sequences A000984 and A004981.
The sequences A000984 and A004981 are related by the identity:
Sum_{n>=0} A000984(n)^3 *x^n = ( Sum_{n>=0} A004981(n)^2 *x^n )^2.
LINKS
FORMULA
a(n) = Sum_{k=0..n} A000984(n-k)*A004981(k).
Recurrence: n*a(n) = 4*(3*n-2)*a(n-1) - 8*(4*n-5)*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ Gamma(3/4)*8^n/(Pi*n^(3/4)). - Vaclav Kotesovec, Oct 20 2012
EXAMPLE
G.f.: A(x) = 1 + 4*x + 60*x^2 + 1200*x^3 + 27300*x^4 + 668304*x^5 +...
This sequence equals the convolution of the sequences:
A000984 = [1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, ...], and
A004981 = [1, 2, 10, 60, 390, 2652, 18564, 132600, 961350, ...].
Related sequences:
A^2: [1, 8, 56, 384, 2656, 18688, 133888, 974848, 7194112, ...],
A^4: [1, 16, 176, 1664, 14592, 122880, 1011712, 8224768, ...].
MATHEMATICA
CoefficientList[Series[(1-4*x)^(-1/2)*(1-8*x)^(-1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
PROG
(PARI) {a(n)=polcoeff((1-4*x +x*O(x^n))^(-1/2)*(1-8*x +x*O(x^n))^(-1/4), n)}
(PARI) {A000984(n)=polcoeff((1-4*x +x*O(x^n))^(-1/2), n)}
{A004981(n)=polcoeff((1-8*x +x*O(x^n))^(-1/4), n)}
{a(n)=sum(k=0, n, A000984(n-k)*A004981(k))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A081085 A212326 A192624 * A294119 A245375 A362223
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 06 2012
STATUS
approved