login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: (1-4*x)^(-1/2) * (1-8*x)^(-1/4).
2

%I #15 Jul 18 2013 11:29:59

%S 1,4,20,112,680,4384,29536,205440,1462368,10587520,77633920,574845440,

%T 4289409280,32206976000,243074083840,1842511532032,14018197145088,

%U 106996519311360,818973463721984,6284217844736000,48327723087278080,372397083591557120

%N G.f.: (1-4*x)^(-1/2) * (1-8*x)^(-1/4).

%C Equals the convolution of sequences A000984 and A004981.

%C The sequences A000984 and A004981 are related by the identity:

%C Sum_{n>=0} A000984(n)^3 *x^n = ( Sum_{n>=0} A004981(n)^2 *x^n )^2.

%H Vincenzo Librandi, <a href="/A209200/b209200.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = Sum_{k=0..n} A000984(n-k)*A004981(k).

%F Recurrence: n*a(n) = 4*(3*n-2)*a(n-1) - 8*(4*n-5)*a(n-2). - _Vaclav Kotesovec_, Oct 20 2012

%F a(n) ~ Gamma(3/4)*8^n/(Pi*n^(3/4)). - _Vaclav Kotesovec_, Oct 20 2012

%e G.f.: A(x) = 1 + 4*x + 60*x^2 + 1200*x^3 + 27300*x^4 + 668304*x^5 +...

%e This sequence equals the convolution of the sequences:

%e A000984 = [1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, ...], and

%e A004981 = [1, 2, 10, 60, 390, 2652, 18564, 132600, 961350, ...].

%e Related sequences:

%e A^2: [1, 8, 56, 384, 2656, 18688, 133888, 974848, 7194112, ...],

%e A^4: [1, 16, 176, 1664, 14592, 122880, 1011712, 8224768, ...].

%t CoefficientList[Series[(1-4*x)^(-1/2)*(1-8*x)^(-1/4), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 20 2012 *)

%o (PARI) {a(n)=polcoeff((1-4*x +x*O(x^n))^(-1/2)*(1-8*x +x*O(x^n))^(-1/4),n)}

%o (PARI) {A000984(n)=polcoeff((1-4*x +x*O(x^n))^(-1/2),n)}

%o {A004981(n)=polcoeff((1-8*x +x*O(x^n))^(-1/4),n)}

%o {a(n)=sum(k=0,n,A000984(n-k)*A004981(k))}

%o for(n=0,20,print1(a(n),", "))

%Y Cf. A000984, A004981.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Mar 06 2012