login
A328545
Number of 11-regular partitions of n (no part is a multiple of 11).
12
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 55, 76, 99, 132, 171, 224, 286, 370, 468, 597, 750, 945, 1177, 1472, 1820, 2255, 2772, 3410, 4165, 5092, 6185, 7515, 9085, 10978, 13207, 15884, 19025, 22774, 27170, 32388, 38489, 45705, 54120, 64030, 75569, 89100
OFFSET
0,3
REFERENCES
Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.
LINKS
FORMULA
a(n) ~ exp(Pi*sqrt(2*n*(s-1)/(3*s))) * (s-1)^(1/4) / (2 * 6^(1/4) * s^(3/4) * n^(3/4)) * (1 + ((s-1)^(3/2)*Pi/(24*sqrt(6*s)) - 3*sqrt(6*s) / (16*Pi * sqrt(s-1))) / sqrt(n) + ((s-1)^3*Pi^2/(6912*s) - 45*s/(256*(s-1)*Pi^2) - 5*(s-1)/128) / n), set s=11. - Vaclav Kotesovec, Aug 01 2022
MAPLE
f:=(k, M) -> mul(1-q^(k*j), j=1..M);
LRP := (L, M) -> f(L, M)/f(1, M);
s := L -> seriestolist(series(LRP(L, 80), q, 60));
s(11);
MATHEMATICA
Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 11], 0, 2] ], {n, 0, 46}]
CROSSREFS
Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.
Sequence in context: A238868 A035999 A036010 * A192061 A218511 A008640
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 19 2019
STATUS
approved