login
A036010
Number of partitions of n into parts not of the form 25k, 25k+11 or 25k-11. Also number of partitions with at most 10 parts of size 1 and differences between parts at distance 11 are greater than 1.
0
1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 55, 76, 99, 131, 170, 222, 283, 365, 461, 586, 735, 924, 1148, 1432, 1767, 2183, 2678, 3286, 4004, 4883, 5918, 7172, 8651, 10428, 12516, 15017, 17946, 21430, 25509, 30337, 35969, 42614, 50347, 59428, 69982
OFFSET
1,2
COMMENTS
Case k=12,i=11 of Gordon Theorem.
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
FORMULA
a(n) ~ exp(2*Pi*sqrt(11*n/3)/5) * 11^(1/4) * cos(3*Pi/50) / (3^(1/4) * 5^(3/2) * n^(3/4)). - Vaclav Kotesovec, May 10 2018
MATHEMATICA
nmax = 60; Rest[CoefficientList[Series[Product[(1 - x^(25*k))*(1 - x^(25*k+11-25))*(1 - x^(25*k-11))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, May 10 2018 *)
CROSSREFS
Sequence in context: A347576 A238868 A035999 * A328545 A192061 A218511
KEYWORD
nonn,easy
STATUS
approved