login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A164090 a(n) = 2*a(n-2) for n > 2; a(1) = 2, a(2) = 3. 12
2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Interleaving of A000079 without initial 1 and A007283.
Agrees from a(2) onward with A145751 for all terms listed there (up to 65536). Apparently equal to 2, 3 followed by A090989. Equals 2 followed by A163978.
Binomial transform is A000129 without first two terms, second binomial transform is A020727, third binomial transform is A164033, fourth binomial transform is A164034, fifth binomial transform is A164035.
Number of achiral necklaces or bracelets with n beads using up to 2 colors. For n=5, the eight achiral necklaces or bracelets are AAAAA, AAAAB, AAABB, AABAB, AABBB, ABABB, ABBBB, and BBBBB. - Robert A. Russell, Sep 22 2018
LINKS
FORMULA
a(n) = A029744(n+1).
a(n) = A052955(n-1) + 1.
a(n) = A027383(n-2) + 2 for n > 1.
a(n) = A060482(n-1) + 3 for n > 3.
a(n) = A070875(n) - A070875(n-1).
a(n) = (7 - (-1)^n)*2^((1/4)*(2*n - 1 + (-1)^n))/4.
G.f.: x*(2+3*x)/(1-2*x^2).
a(n) = A063759(n-1), n>1. - R. J. Mathar, Aug 17 2009
Sum_{n>=1} 1/a(n) = 5/3. - Amiram Eldar, Mar 28 2022
MATHEMATICA
a[n_] := If[EvenQ[n], 3*2^(n/2 - 1), 2^((n + 1)/2)]; Array[a, 42] (* Jean-François Alcover, Oct 12 2017 *)
RecurrenceTable[{a[1]==2, a[2]==3, a[n]==2a[n-2]}, a, {n, 50}] (* or *) LinearRecurrence[{0, 2}, {2, 3}, 50] (* Harvey P. Dale, Mar 01 2018 *)
PROG
(Magma) [ n le 2 select n+1 else 2*Self(n-2): n in [1..42] ];
(PARI) a(n) = if(n%2, 2, 3) * 2^((n-1)\2); \\ Andrew Howroyd, Oct 07 2017
CROSSREFS
Second column of A284855.
Sequence in context: A364964 A320315 A364956 * A029744 A018635 A018425
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Aug 09 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 20 15:01 EDT 2024. Contains 374459 sequences. (Running on oeis4.)