login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163978
a(n) = 2*a(n-2) for n > 2; a(1) = 3, a(2) = 4.
3
3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728
OFFSET
1,1
COMMENTS
Interleaving of A007283 and A000079 without initial terms 1 and 2.
Equals A029744 without first two terms. Agrees with A145751 for all terms listed there (up to 65536).
Binomial transform is A078057 without initial 1, second binomial transform is A048580, third binomial transform is A163606, fourth binomial transform is A163604, fifth binomial transform is A163605.
a(n) is the number of vertices of the (n-1)-iterated line digraph L^{n-1}(G) of the digraph G(=L^0(G)) with vertices u,v,w and arcs u->v, v->u, v->w, w->v. - Miquel A. Fiol, Jun 08 2024
LINKS
Miquel A. Fiol, J. L. A. Yebra, and I. Alegre, Line digraph iterations and the (d,k) digraph problem, IEEE Trans. Comput. C-33(5) (1984), 400-403.
FORMULA
a(n) = A027383(n-1) + 2.
a(n) = A052955(n) + 1 for n >= 1.
a(n) = (1/2)*(5 - (-1)^n)*2^((2*n - 1 + (-1)^n)/4).
G.f.: x*(3+4*x)/(1-2*x^2).
a(n) = A090989(n-1).
E.g.f.: (1/2)*(4*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x) - 4). - G. C. Greubel, Aug 24 2017
a(n) = A063759(n), n >= 1. - R. J. Mathar, Jan 25 2023
MATHEMATICA
LinearRecurrence[{0, 2}, {3, 4, 6, 8}, 52]] (* or *) Table[(1/2)*(5-(-1)^n )*2^((2*n-1+(-1)^n)/4), {n, 50}] (* G. C. Greubel, Aug 24 2017 *)
PROG
(Magma) [ n le 2 select n+2 else 2*Self(n-2): n in [1..41] ];
(PARI) my(x='x+O('x^50)); Vec(x*(3+4*x)/(1-2*x^2)) \\ G. C. Greubel, Aug 24 2017
(SageMath) [(2+(n%2))*2^((n-(n%2))//2) for n in range(1, 41)] # G. C. Greubel, Jun 13 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Aug 07 2009
STATUS
approved