OFFSET
1,1
COMMENTS
Equals A029744 without first two terms. Agrees with A145751 for all terms listed there (up to 65536).
Binomial transform is A078057 without initial 1, second binomial transform is A048580, third binomial transform is A163606, fourth binomial transform is A163604, fifth binomial transform is A163605.
a(n) is the number of vertices of the (n-1)-iterated line digraph L^{n-1}(G) of the digraph G(=L^0(G)) with vertices u,v,w and arcs u->v, v->u, v->w, w->v. - Miquel A. Fiol, Jun 08 2024
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..2000
Miquel A. Fiol, J. L. A. Yebra, and I. Alegre, Line digraph iterations and the (d,k) digraph problem, IEEE Trans. Comput. C-33(5) (1984), 400-403.
Index entries for linear recurrences with constant coefficients, signature (0,2).
FORMULA
a(n) = A027383(n-1) + 2.
a(n) = A052955(n) + 1 for n >= 1.
a(n) = (1/2)*(5 - (-1)^n)*2^((2*n - 1 + (-1)^n)/4).
G.f.: x*(3+4*x)/(1-2*x^2).
a(n) = A090989(n-1).
E.g.f.: (1/2)*(4*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x) - 4). - G. C. Greubel, Aug 24 2017
a(n) = A063759(n), n >= 1. - R. J. Mathar, Jan 25 2023
MATHEMATICA
LinearRecurrence[{0, 2}, {3, 4, 6, 8}, 52]] (* or *) Table[(1/2)*(5-(-1)^n )*2^((2*n-1+(-1)^n)/4), {n, 50}] (* G. C. Greubel, Aug 24 2017 *)
PROG
(Magma) [ n le 2 select n+2 else 2*Self(n-2): n in [1..41] ];
(PARI) my(x='x+O('x^50)); Vec(x*(3+4*x)/(1-2*x^2)) \\ G. C. Greubel, Aug 24 2017
(SageMath) [(2+(n%2))*2^((n-(n%2))//2) for n in range(1, 41)] # G. C. Greubel, Jun 13 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Aug 07 2009
STATUS
approved