login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240452
Number of partitions p of n such that (sum of parts with multiplicity 1) >= (sum of all other parts).
5
1, 1, 1, 2, 3, 4, 6, 8, 13, 17, 22, 28, 43, 55, 71, 87, 124, 153, 202, 243, 332, 401, 511, 608, 828, 984, 1236, 1458, 1903, 2245, 2826, 3301, 4245, 4963, 6119, 7108, 9064, 10508, 12837, 14834, 18584, 21442, 26150, 30028, 37139, 42599, 51356, 58742, 72370
OFFSET
0,4
FORMULA
a(n) + A240449(n) = A000041(n) for n >= 0.
EXAMPLE
a(6) counts these 6 partitions: 6, 51, 42, 411, 321, 3111.
MATHEMATICA
z = 30; p[n_] := p[n] = IntegerPartitions[n]; f[p_] := f[p] = First[Transpose[p]];
ColumnForm[t = Table[Select[p[n], 2 Total[f[Select[#, Last[#] == 1 &] /. {} -> {{0, 0}}]] &[Tally[#]] < n &], {n, 0, z}]] (* shows the partitions *)
Map[Length, t] (* A240448 *)
ColumnForm[t = Table[Select[p[n], 2 Total[f[Select[#, Last[#] == 1 &] /. {} -> {{0, 0}}]] &[Tally[#]] <= n &], {n, 0, z}]] (* shows the partitions *)
Map[Length, t] (* A240449 *)
ColumnForm[t = Table[Select[p[n], 2 Total[f[Select[#, Last[#] == 1 &] /. {} -> {{0, 0}}]] &[Tally[#]] == n &], {n, 0, z}]] (* shows the partitions *)
Map[Length, t] (* A240447 with alternating 0's *)
ColumnForm[t = Table[Select[p[n], 2 Total[f[Select[#, Last[#] == 1 &] /. {} -> {{0, 0}}]] &[Tally[#]] > n &], {n, 0, z}]] (* shows the partitions *)
Map[Length, t] (* A240451 *)
ColumnForm[t = Table[Select[p[n], 2 Total[f[Select[#, Last[#] == 1 &] /. {} -> {{0, 0}}]] &[Tally[#]] >= n &], {n, 0, z}]] (* shows the partitions *)
Map[Length, t] (* A240452 *)
(* Peter J. C. Moses, Apr 02 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 05 2014
STATUS
approved