OFFSET
0,4
EXAMPLE
a(6) counts these 6 partitions: 6, 51, 42, 411, 321, 3111.
MATHEMATICA
z = 30; p[n_] := p[n] = IntegerPartitions[n]; f[p_] := f[p] = First[Transpose[p]];
ColumnForm[t = Table[Select[p[n], 2 Total[f[Select[#, Last[#] == 1 &] /. {} -> {{0, 0}}]] &[Tally[#]] < n &], {n, 0, z}]] (* shows the partitions *)
Map[Length, t] (* A240448 *)
ColumnForm[t = Table[Select[p[n], 2 Total[f[Select[#, Last[#] == 1 &] /. {} -> {{0, 0}}]] &[Tally[#]] <= n &], {n, 0, z}]] (* shows the partitions *)
Map[Length, t] (* A240449 *)
ColumnForm[t = Table[Select[p[n], 2 Total[f[Select[#, Last[#] == 1 &] /. {} -> {{0, 0}}]] &[Tally[#]] == n &], {n, 0, z}]] (* shows the partitions *)
Map[Length, t] (* A240447 with alternating 0's *)
ColumnForm[t = Table[Select[p[n], 2 Total[f[Select[#, Last[#] == 1 &] /. {} -> {{0, 0}}]] &[Tally[#]] > n &], {n, 0, z}]] (* shows the partitions *)
Map[Length, t] (* A240451 *)
ColumnForm[t = Table[Select[p[n], 2 Total[f[Select[#, Last[#] == 1 &] /. {} -> {{0, 0}}]] &[Tally[#]] >= n &], {n, 0, z}]] (* shows the partitions *)
Map[Length, t] (* A240452 *)
(* Peter J. C. Moses, Apr 02 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 05 2014
STATUS
approved