login
A048763
Smallest cube >= n.
6
0, 1, 8, 8, 8, 8, 8, 8, 8, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 125, 125, 125, 125, 125, 125
OFFSET
0,3
REFERENCES
Krassimir T. Atanassov, On the 40th and 41st Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 4, No. 3 (1998), 101-104.
J. Castillo, Other Smarandache Type Functions: Inferior/Superior Smarandache f-part of x, Smarandache Notions Journal, Vol. 10, No. 1-2-3 (1999), 202-204.
LINKS
Krassimir T. Atanassov, On Some of Smarandache's Problems, American Research Press, 1999, 27-32.
Florentin Smarandache, Only Problems, Not Solutions!.
FORMULA
Sum_{n>=1} 1/a(n)^2 = Pi^4/30 + Pi^6/945 - 3*zeta(5). - Amiram Eldar, Aug 15 2022
MAPLE
A048763 := proc(n)
ceil(root[3](n)) ;
%^3 ;
end proc: # R. J. Mathar, Nov 06 2011
MATHEMATICA
With[{nn=80}, Flatten[Table[Select[Range[0, Floor[nn^(1/3)]+1]^3, #>=n&, 1], {n, 0, nn}]]] (* Harvey P. Dale, Aug 09 2012 *)
PROG
(Haskell)
a048763 0 = 0
a048763 n = head $ dropWhile (< n) a000578_list
-- Reinhard Zumkeller, Nov 28 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Charles T. Le (charlestle(AT)yahoo.com)
EXTENSIONS
a(65), a(66) and a(67) corrected by Reinhard Zumkeller, Nov 28 2011
STATUS
approved