Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Oct 27 2023 22:00:45
%S 2,2,2,2,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,2,2,2,2,2,2,2,4,2,2,2,2,4,
%T 2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,2,2,2,2,2,1,1,2,2,2,2,2,2,2,4,2,2,2,
%U 2,4,2,2,2,2,2,2,2,2,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,4,2,2,2,2,4,2,2,2,2,2,2
%N First differences between numbers k for which sigma(k) > sigma(k+1).
%C It seems that the expansion consists of only {1,2,3,4}.
%C The first exception is a(18360922) = 6, corresponding to the gap from 36721680 to 36721686. - _Charles R Greathouse IV_, Mar 09 2014
%C The asymptotic mean of this sequence is 2 (Erdős, 1936). - _Amiram Eldar_, Mar 19 2021
%H Reinhard Zumkeller, <a href="/A053238/b053238.txt">Table of n, a(n) for n = 1..10000</a>
%H Paul Erdős, <a href="https://doi.org/10.1017/S0305004100019277">On a problem of Chowla and some related problems</a>, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 32, No. 4 (1936), pp. 530-540; <a href="https://old.renyi.hu/~p_erdos/1936-03.pdf">alternative link</a>.
%F a(n) = A053226(n+1) - A053226(n).
%p with(numtheory): f := [seq( `if`((sigma(i) > sigma(i+1)),i,print( )), i=1..5000)];
%p seq( f[i+1] - f[i], i=1..2000);
%t Differences[Select[Range[250],DivisorSigma[1,#]>DivisorSigma [1,#+1]&]] (* _Harvey P. Dale_, Apr 22 2011 *)
%t Differences[Flatten[Position[Partition[DivisorSigma[1,Range[300]],2,1],_?(#[[1]]>#[[2]]&),1,Heads->False]]] (* _Harvey P. Dale_, Oct 18 2020 *)
%o (Haskell)
%o a053238 n = a053238_list !! (n-1)
%o a053238_list = zipWith (-) (tail a053226_list) a053226_list
%o -- _Reinhard Zumkeller_, Oct 16 2011
%o (PARI) last=ls=1; for(n=2,200,ns=sigma(n+1); if(ls<=ns,ls=ns; next); ls=ns; print1(n-last", ");last=n) \\ _Charles R Greathouse IV_, Mar 09 2014
%Y Cf. A000203, A053226, A053230, A053239, A053240, A053241, A053242, A053243, A053244, A053245.
%K nonn,nice
%O 1,1
%A _Asher Auel_, Jan 10 2000