login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of f(x, x^5)^2 in powers of x where f(, ) is Ramanujan's general theta function.
33

%I #20 Mar 12 2021 22:24:44

%S 1,2,1,0,0,2,2,0,2,2,1,0,0,2,0,0,3,2,0,0,0,4,2,0,2,0,2,0,0,2,0,0,1,2,

%T 2,0,0,2,2,0,2,4,1,0,0,2,0,0,2,2,0,0,0,0,2,0,4,2,0,0,0,4,0,0,2,2,3,0,

%U 0,0,2,0,2,4,0,0,0,2,0,0,1,2,0,0,0,2,4,0,0,2,2,0,0,2,0,0,4,2,2,0,0,4,0,0,2

%N Expansion of f(x, x^5)^2 in powers of x where f(, ) is Ramanujan's general theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A122856/b122856.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of (chi(x) * psi(-x^3))^2 in powers of x where chi(), psi() are Ramanujan theta functions.

%F Expansion of q^(-2/3) * (eta(q^2)^2 * eta(q^3) * eta(q^12) / (eta(q) * eta(q^4) * eta(q^6)))^2 in powers of q.

%F Euler transform of period 12 sequence [2, -2, 0, 0, 2, -2, 2, 0, 0, -2, 2, -2, ...].

%F a(4*n + 3) = a(8*n + 4) = 0. a(n) = A002654(3*n + 2) = A035154(3*n + 2) = A113446(3*n + 2). a(2*n) = A122865(n). a(4*n + 1) = 2 * A121444(n). a(4*n + 2) = A122856(n).

%F a(n) = (-1)^n * A258278(n). Convolution square of A089801.

%e G.f. = 1 + 2*x + x^2 + 2*x^5 + 2*x^6 + 2*x^8 + 2*x^9 + x^10 + 2*x^13 + ...

%e G.f. = q^2 + 2*q^5 + q^8 + 2*q^17 + 2*q^20 + 2*q^26 + 2*q^29 + q^32 + ...

%t a[ n_] := If[ n < 0, 0, With[ {m = 3 n + 2}, Sum[ KroneckerSymbol[ -4, d], {d, Divisors@m}]]]; (* _Michael Somos_, Nov 14 2011 *)

%t QP = QPochhammer; s = (QP[q^2]^2*QP[q^3]*(QP[q^12]/(QP[q]*QP[q^4]*QP[q^6]) ))^2 + O[q]^105; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 30 2015, adapted from PARI *)

%t a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x^(1/3)] - EllipticTheta[ 3, 0, x^3])^2 / (4 x^(2/3)), {x, 0, n}]; (* _Michael Somos_, Jan 19 2017 *)

%t a[ n_] := SeriesCoefficient[ (QPochhammer[ -x, x^2] EllipticTheta[ 2, Pi/4, x^(3/2)])^2 / (2 x^(3/4)), {x, 0, n}]; (* _Michael Somos_, Jan 19 2017 *)

%o (PARI) {a(n) = if( n<0, 0, n = 3*n+2; sumdiv(n, d, (d%4==1) - (d%4==3)))};

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)))^2, n))};

%Y Cf. A002654, A035154, A089801, A113446, A121444, A122865, A258278.

%K nonn

%O 0,2

%A _Michael Somos_, Sep 14 2006