login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091398
a(n) = Product_{ p | n } (1 + Legendre(5,p) ).
3
1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0
OFFSET
1,11
LINKS
FORMULA
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5*sqrt(5) * log(phi)/(2*Pi^2) = 0.272559..., where phi is the golden ratio (A001622). - Amiram Eldar, Oct 17 2022
MAPLE
with(numtheory); L := proc(n, N) local i, t1, t2; t1 := ifactors(n)[2]; t2 := mul((1+legendre(N, t1[i][1])), i=1..nops(t1)); end; [seq(L(n, 5), n=1..120)];
MATHEMATICA
a[n_] := Times @@ (1+KroneckerSymbol[5, #]& /@ FactorInteger[n][[All, 1]]);
Array[a, 105] (* Jean-François Alcover, Apr 08 2020 *)
PROG
(PARI) a(n)={my(f=factor(n)[, 1]); prod(i=1, #f, 1 + kronecker(5, f[i]))} \\ Andrew Howroyd, Jul 23 2018
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
N. J. A. Sloane, Mar 02 2004
STATUS
approved