The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123761 Let k(n) = mod(3,n)-1. Then a(n) = 4*a(n-1) if n is odd, otherwise ((5+k(n))/4)*a(n-1), with a(0) = 1, a(1) = 2. 1
 1, 2, 3, 12, 15, 60, 60, 240, 360, 1440, 1800, 7200, 7200, 28800, 43200, 172800, 216000, 864000, 864000, 3456000, 5184000, 20736000, 25920000, 103680000, 103680000, 414720000, 622080000, 2488320000, 3110400000, 12441600000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A double modulo switch recursion with four basic ratio states: {4,1,5/4,3/2}. Surprisingly, the function behaves very much like the factorial function. 10^floor(n/6) | a(n). - G. C. Greubel, Aug 10 2019 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,120). FORMULA a(n) = 120*a(n-6) for n>=7. G.f.: (1+2*x+3*x^2+12*x^3+15*x^4+60*x^5-60*x^6)/(1-120*x^6). - Colin Barker, May 08 2014 MAPLE seq(coeff(series((1+2*x+3*x^2+12*x^3+15*x^4+60*x^5-60*x^6)/(1-120*x^6), x, n+1), x, n), n = 0 .. 35); # G. C. Greubel, Aug 10 2019 MATHEMATICA k[n_]:= Mod[n, 3] -1; f[0]=1; f[1]=2; f[n_]:= f[n] = If[Mod[n, 2] == 1, 4*f[n-1], ((5 +k[n])/4)*f[n-1]]; Table[f[n], {n, 0, 35}] LinearRecurrence[{0, 0, 0, 0, 0, 120}, {1, 2, 3, 12, 15, 60, 60}, 35] (* G. C. Greubel, Aug 10 2019 *) PROG (PARI) my(x='x+O('x^35)); Vec((1+2*x+3*x^2+12*x^3+15*x^4+60*x^5-60*x^6 )/(1-120*x^6)) \\ G. C. Greubel, Aug 10 2019 (MAGMA) I:=[2, 3, 12, 15, 60, 60]; [1] cat [n le 6 select I[n] else 120*Self(n-6): n in [1..35]]; // G. C. Greubel, Aug 10 2019 (Sage) def A123761_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P((1+2*x+3*x^2+12*x^3+15*x^4+60*x^5-60*x^6)/(1-120*x^6)).list() A123761_list(35) # G. C. Greubel, Aug 10 2019 (GAP) a:=[2, 3, 12, 15, 60, 60];; for n in [7..35] do a[n]:=120*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019 CROSSREFS Sequence in context: A290168 A124486 A260908 * A181121 A345362 A333319 Adjacent sequences:  A123758 A123759 A123760 * A123762 A123763 A123764 KEYWORD nonn AUTHOR Roger L. Bagula, Nov 16 2006 EXTENSIONS Edited by N. J. A. Sloane, Nov 19 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 10:39 EST 2022. Contains 350607 sequences. (Running on oeis4.)