login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290168
If n is even then a(n) = n^2*(n+2)/8, otherwise a(n) = (n-1)*n*(n+1)/8.
1
0, 0, 2, 3, 12, 15, 36, 42, 80, 90, 150, 165, 252, 273, 392, 420, 576, 612, 810, 855, 1100, 1155, 1452, 1518, 1872, 1950, 2366, 2457, 2940, 3045, 3600, 3720, 4352, 4488, 5202, 5355, 6156, 6327, 7220, 7410, 8400
OFFSET
0,3
COMMENTS
Bisection of a(n) [0, 2, 12, 36, 80, 150, 252, ...] is A011379.
Bisection [0, 3, 15, 42, 90, 165, 273, ...] is A059270.
Considering s(n) = [0, 0, 0, 0, 1, 1, 3, 3, 6, 6, 10, 10, 15, 15, ...] (triangular numbers repeated - see A008805), a(n) = n*s(n+2) holds.
Considering the first differences of a(n), b(n) = [0, 2, 1 , 9, 3, 21, 6, 38, 10, 60, 15, 87, ...], b(n) shows bisections A000217 and A005476. In addition, b(n) begins like A249264 up to 12th term, and is an alternation of 4 multiples of 3 and 2 not multiples; b(n) is also such that b(2n) + b(2n+1) = A049450(n).
Considering the second differences c(n), c(n) shows bisections A001105(n+1) and -A000384(n+1), c(n) has 3 consecutive terms multiples of 3 alternating with 3 not multiples; in addition, c(2n) + c(2n+1) = A000027(n).
Considering a(n)/c(n) = [0, 0, 1/4, -1/2, 2/3, -1, 9/8, -3/2, 8/5, -2, 25/12, -5/2, ...], it appears that it is A129194(n)/A022998(n+1) and -A026741(n)/A000034(n) alternating.
FORMULA
G.f.: x^2*(2 + x + 3*x^2)/((x-1)^4*(x+1)^3).
a(n) = (1/16)*(-1)^n*n*(1 + (-1)^(n+1) + 2*(1 + (-1)^n)*n + 2*(-1)^n*n^2).
Sum_{n>=2} 1/a(n) = 5 + Pi^2/6 - 8*log(2). - Amiram Eldar, Sep 17 2022
MATHEMATICA
a[n_] := If[EvenQ[n], n^2*(n + 2)/8, (n - 1)*n*(n + 1)/8]; Table[a[n], {n, 0, 40}]
PROG
(PARI) a(n) = if(n%2==0, n^2*(n+2)/8, (n-1)*n*(n+1)/8) \\ Felix Fröhlich, Jul 23 2017
KEYWORD
nonn
AUTHOR
STATUS
approved