OFFSET
0,2
COMMENTS
a(n) is half the number of ways to divide an n X n square into 3 rectangles whose side-lengths are integers. See Matthew Scroggs link. - George Witty, Feb 06 2024
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Matthew Scroggs, Advent Calendar 2023 Solutions.
Leo Tavares, Illustration: Triangulated Diamonds
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = C(5*n,2)/5 for n>=0. - Zerinvary Lajos, Jan 02 2007
a(n) = a(n-1) + 5*n - 3 for n>0, a(0)=0. - Vincenzo Librandi, Nov 18 2010
a(n) = A130520(5*n+1). - Philippe Deléham, Mar 26 2013
From Bruno Berselli, Oct 17 2016: (Start)
G.f.: x*(2 + 3*x)/(1 - x)^3.
E.g.f.: x*(4 + 5*x)*exp(x)/2. - G. C. Greubel, Jul 30 2019
Sum_{n>=1} 1/a(n) = 2 * A294833. - Amiram Eldar, Nov 16 2020
From Leo Tavares, Nov 20 2021: (Start)
MAPLE
[seq(binomial(5*n, 2)/5, n=0..40)]; # Zerinvary Lajos, Jan 02 2007
MATHEMATICA
Table[n(5n-1)/2, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Oct 25 2008 *)
PROG
(PARI) a(n)=n*(5*n-1)/2 \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [Binomial(5*n, 2)/5: n in [0..40]]; // G. C. Greubel, Jul 30 2019
(Sage) [binomial(5*n, 2)/5 for n in (0..40)] # G. C. Greubel, Jul 30 2019
(GAP) List([0..40], n-> Binomial(5*n, 2)/5); # G. C. Greubel, Jul 30 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved