login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353460
Dirichlet convolution of A126760 with A349134 (the Dirichlet inverse of Kimberling's paraphrases).
3
1, 0, -1, 0, -1, 0, -1, 0, -2, 0, -2, 0, -2, 0, -1, 0, -3, 0, -3, 0, -2, 0, -4, 0, -1, 0, -4, 0, -5, 0, -5, 0, -3, 0, 1, 0, -6, 0, -4, 0, -7, 0, -7, 0, 0, 0, -8, 0, -4, 0, -5, 0, -9, 0, 3, 0, -6, 0, -10, 0, -10, 0, -1, 0, 2, 0, -11, 0, -7, 0, -12, 0, -12, 0, -3, 0, 1, 0, -13, 0, -8, 0, -14, 0, 4, 0, -9, 0, -15, 0, 0, 0
OFFSET
1,9
COMMENTS
Taking the Dirichlet convolution between this sequence and A349371 gives A349393, and similarly for many other such analogous pairs.
LINKS
FORMULA
a(n) = Sum_{d|n} A126760(d) * A349134(n/d).
PROG
(PARI)
A003602(n) = (1+(n>>valuation(n, 2)))/2;
A126760(n) = {n&&n\=3^valuation(n, 3)<<valuation(n, 2); n%3+n\6*2}; \\ From A126760
memoA349134 = Map();
A349134(n) = if(1==n, 1, my(v); if(mapisdefined(memoA349134, n, &v), v, v = -sumdiv(n, d, if(d<n, A003602(n/d)*A349134(d), 0)); mapput(memoA349134, n, v); (v)));
A353460(n) = sumdiv(n, d, A126760(d)*A349134(n/d));
CROSSREFS
Cf. A003602, A126760, A349134, A353461 (Dirichlet inverse), A353462 (sum with it).
Sequence in context: A335622 A172444 A277146 * A026611 A277152 A230106
KEYWORD
sign
AUTHOR
Antti Karttunen, Apr 20 2022
STATUS
approved