login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230106
Number of m such that m + (product of nonzero digits of m) equals n.
2
0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 1, 1, 0, 0, 2, 0, 0, 0, 1, 2, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 2, 1, 1, 0, 1, 0, 0, 0, 2, 1, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 1, 0, 1, 1, 0, 0, 2, 1, 1, 1, 3
OFFSET
0,13
COMMENTS
Number of times n appears in A063114.
MAPLE
# Maple code for A063114, A230106, A063425, A096922
with(LinearAlgebra):
read transforms; # to get digprod0
M:=1000;
lis1:=Array(0..M);
lis2:=Array(0..M);
ctmax:=4;
for i from 0 to ctmax do ct[i]:=Array(0..M); od:
for n from 0 to M do
m:=n+digprod0(n);
lis1[n]:=m;
if (m <= M) then lis2[m]:=lis2[m]+1; fi;
od:
t1:=[seq(lis1[i], i=0..M)]; # A063114
t2:=[seq(lis2[i], i=0..M)]; # A230106
COMPl(t1); # A063425
for i from 1 to M do h:=lis2[i];
if h <= ctmax then ct[h]:=[op(ct[h]), i]; fi; od:
len:=nops(ct[0]); [seq(ct[0][i], i=1..len)]; # A063425 again
len:=nops(ct[1]); [seq(ct[1][i], i=1..len)]; # A096922
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Oct 13 2013
EXTENSIONS
a(1) corrected by Zak Seidov, Oct 24 2013
STATUS
approved