login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349912
Sum of A336466 and its Dirichlet inverse, where A336466 is fully multiplicative with a(p) = oddpart(p-1).
2
2, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 1, 0, 6, 2, 1, 0, 1, 0, 1, 6, 10, 0, 1, 1, 6, 1, 3, 0, 0, 0, 1, 10, 2, 6, 1, 0, 18, 6, 1, 0, 0, 0, 5, 1, 22, 0, 1, 9, 1, 2, 3, 0, 1, 10, 3, 18, 14, 0, 1, 0, 30, 3, 1, 6, 0, 0, 1, 22, 0, 0, 1, 0, 18, 1, 9, 30, 0, 0, 1, 1, 10, 0, 3, 2, 42, 14, 5, 0, 1, 18, 11, 30, 46, 18, 1, 0, 9, 5, 1
OFFSET
1,1
LINKS
FORMULA
a(n) = A336466(n) + A349911(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1<d<n} A336466(d) * A349911(n/d).
a(4*n) = A336466(n).
MATHEMATICA
f[p_, e_] := ((p-1)/2^IntegerExponent[p-1, 2])^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := s[n] + sinv[n]; Array[a, 100] (* Amiram Eldar, Dec 08 2021 *)
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, A000265(f[k, 1]-1)^f[k, 2]); };
memoA349911 = Map();
A349911(n) = if(1==n, 1, my(v); if(mapisdefined(memoA349911, n, &v), v, v = -sumdiv(n, d, if(d<n, A336466(n/d)*A349911(d), 0)); mapput(memoA349911, n, v); (v)));
A349912(n) = (A336466(n)+A349911(n));
CROSSREFS
Cf. A336466 (also a quadrisection of this sequence), A349911.
Cf. also A322581.
Sequence in context: A353459 A007423 A076544 * A345079 A307377 A353367
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 08 2021
STATUS
approved