login
A349912
Sum of A336466 and its Dirichlet inverse, where A336466 is fully multiplicative with a(p) = oddpart(p-1).
2
2, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 1, 0, 6, 2, 1, 0, 1, 0, 1, 6, 10, 0, 1, 1, 6, 1, 3, 0, 0, 0, 1, 10, 2, 6, 1, 0, 18, 6, 1, 0, 0, 0, 5, 1, 22, 0, 1, 9, 1, 2, 3, 0, 1, 10, 3, 18, 14, 0, 1, 0, 30, 3, 1, 6, 0, 0, 1, 22, 0, 0, 1, 0, 18, 1, 9, 30, 0, 0, 1, 1, 10, 0, 3, 2, 42, 14, 5, 0, 1, 18, 11, 30, 46, 18, 1, 0, 9, 5, 1
OFFSET
1,1
LINKS
FORMULA
a(n) = A336466(n) + A349911(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1<d<n} A336466(d) * A349911(n/d).
a(4*n) = A336466(n).
MATHEMATICA
f[p_, e_] := ((p-1)/2^IntegerExponent[p-1, 2])^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := s[n] + sinv[n]; Array[a, 100] (* Amiram Eldar, Dec 08 2021 *)
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A336466(n) = { my(f=factor(n)); prod(k=1, #f~, A000265(f[k, 1]-1)^f[k, 2]); };
memoA349911 = Map();
A349911(n) = if(1==n, 1, my(v); if(mapisdefined(memoA349911, n, &v), v, v = -sumdiv(n, d, if(d<n, A336466(n/d)*A349911(d), 0)); mapput(memoA349911, n, v); (v)));
A349912(n) = (A336466(n)+A349911(n));
CROSSREFS
Cf. A336466 (also a quadrisection of this sequence), A349911.
Cf. also A322581.
Sequence in context: A353459 A007423 A076544 * A345079 A307377 A353367
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 08 2021
STATUS
approved