login
A090998
Decimal expansion of lim_{k -> +-oo} k^2*(1 - Gamma(1+i/k)) where i^2 = -1 and Gamma is the Gamma function.
8
9, 8, 9, 0, 5, 5, 9, 9, 5, 3, 2, 7, 9, 7, 2, 5, 5, 5, 3, 9, 5, 3, 9, 5, 6, 5, 1, 5, 0, 0, 6, 3, 4, 7, 0, 7, 9, 3, 9, 1, 8, 3, 5, 2, 0, 7, 2, 8, 2, 1, 4, 0, 9, 0, 4, 4, 3, 1, 9, 5, 7, 8, 3, 6, 8, 6, 1, 3, 6, 6, 3, 2, 0, 4, 9, 4, 7, 8, 7, 7, 1, 7, 4, 7, 4, 4, 6, 0, 8, 4, 6, 2, 5, 7, 3, 7, 3, 4, 1, 3, 0, 3, 5, 2
OFFSET
0,1
COMMENTS
Limit_{k->oo} k*(1-Gamma(1+1/k)) = -Gamma'(1) = gamma = 0.577....
Decimal expansion of the higher-order exponential integral constant gamma(2,1). The higher-order exponential integrals, see A163931, are defined by E(x,m,n) = x^(n-1)*Integral_{t=x..oo} (E(t,m-1,n)/t^n) dt for m >= 1 and n >= 1, with E(x,m=0,n) = exp(-x). The series expansions of the higher-order exponential integrals are dominated by the gamma(k,n) and the alpha(k,n) constants, see A163927. - Johannes W. Meijer and Nico Baken, Aug 13 2009
LINKS
J. W. Meijer and N. H. G. Baken, The Exponential Integral Distribution, Statistics and Probability Letters, Volume 5, No. 3, April 1987, pp. 209-211.
FORMULA
From Johannes W. Meijer and Nico Baken, Aug 13 2009: (Start)
G(2,1) = gamma(2,1) = gamma^2/2 + Pi^2/12.
G(k,n) = (1/k)*(gamma*G(k-1,n)) - (1/k)*Sum_{p=1..n-1} (p^(-1))* G(k-1,n) + (1/k) * Sum_{i=0..k-2} (Zeta(k-i) * G(i,n)) - (1/k)*Sum_{i=0..k-2}(Sum_{p=1..n-1} (p^(i-k)) * G(i,n)) with G(0,n) = 1 for k >= 0 and n >= 1.
G(k,n+1) = G(k,n) - G(k-1,n)/n.
GF(z,n) = GAMMA(n-z)/GAMMA(n).
(gamma - G(1,n)) = A001008(n-1)/A002805(n-1) for n >= 2. (End)
Equals A081855/2. - Hugo Pfoertner, Mar 12 2024
EXAMPLE
G(2,1) = 0.9890559953279725553953956515...
MAPLE
ncol:=1; nmax:=5; kmax:=nmax; for n from 1 to nmax do G(0, n):=1 od: for n from 1 to nmax do for k from 1 to kmax do G(k, n):= expand((1/k)*((gamma-sum(p^(-1), p=1..n-1))* G(k-1, n)+sum((Zeta(k-i)-sum(p^(-(k-i)), p=1..n-1))*G(i, n), i=0..k-2))) od; od: for k from 0 to kmax do G(k, ncol):=G(k, ncol) od; # Johannes W. Meijer and Nico Baken, Aug 13 2009
MATHEMATICA
RealDigits[(6*EulerGamma^2 + Pi^2)/12, 10, 104][[1]] (* Jean-François Alcover, Mar 04 2013 *)
PROG
(PARI) default(realprecision, 100); (6*Euler^2 +Pi^2)/12 \\ G. C. Greubel, Feb 01 2019
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (6*EulerGamma(R)^2 + Pi(R)^2)/12; // G. C. Greubel, Feb 01 2019
(Sage) numerical_approx((6*euler_gamma^2 + pi^2)/12, digits=100) # G. C. Greubel, Feb 01 2019
CROSSREFS
Cf. A163931 (E(x,m,n)), A163927 (alpha(k,n)), A001620 (gamma).
The structure of the G(k,n=1) formulas lead (replace gamma with G and Zeta with Z) to A036039. - Johannes W. Meijer and Nico Baken, Aug 13 2009
Cf. A081855.
Sequence in context: A175572 A263984 A021095 * A163930 A157371 A343060
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Feb 29 2004
STATUS
approved