OFFSET
0,1
COMMENTS
Limit_{k->oo} k*(1-Gamma(1+1/k)) = -Gamma'(1) = gamma = 0.577....
Decimal expansion of the higher-order exponential integral constant gamma(2,1). The higher-order exponential integrals, see A163931, are defined by E(x,m,n) = x^(n-1)*Integral_{t=x..oo} (E(t,m-1,n)/t^n) dt for m >= 1 and n >= 1, with E(x,m=0,n) = exp(-x). The series expansions of the higher-order exponential integrals are dominated by the gamma(k,n) and the alpha(k,n) constants, see A163927. - Johannes W. Meijer and Nico Baken, Aug 13 2009
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
J. W. Meijer and N. H. G. Baken, The Exponential Integral Distribution, Statistics and Probability Letters, Volume 5, No. 3, April 1987, pp. 209-211.
FORMULA
From Johannes W. Meijer and Nico Baken, Aug 13 2009: (Start)
G(2,1) = gamma(2,1) = gamma^2/2 + Pi^2/12.
G(k,n) = (1/k)*(gamma*G(k-1,n)) - (1/k)*Sum_{p=1..n-1} (p^(-1))* G(k-1,n) + (1/k) * Sum_{i=0..k-2} (Zeta(k-i) * G(i,n)) - (1/k)*Sum_{i=0..k-2}(Sum_{p=1..n-1} (p^(i-k)) * G(i,n)) with G(0,n) = 1 for k >= 0 and n >= 1.
G(k,n+1) = G(k,n) - G(k-1,n)/n.
GF(z,n) = GAMMA(n-z)/GAMMA(n).
Equals A081855/2. - Hugo Pfoertner, Mar 12 2024
EXAMPLE
G(2,1) = 0.9890559953279725553953956515...
MAPLE
ncol:=1; nmax:=5; kmax:=nmax; for n from 1 to nmax do G(0, n):=1 od: for n from 1 to nmax do for k from 1 to kmax do G(k, n):= expand((1/k)*((gamma-sum(p^(-1), p=1..n-1))* G(k-1, n)+sum((Zeta(k-i)-sum(p^(-(k-i)), p=1..n-1))*G(i, n), i=0..k-2))) od; od: for k from 0 to kmax do G(k, ncol):=G(k, ncol) od; # Johannes W. Meijer and Nico Baken, Aug 13 2009
MATHEMATICA
RealDigits[(6*EulerGamma^2 + Pi^2)/12, 10, 104][[1]] (* Jean-François Alcover, Mar 04 2013 *)
PROG
(PARI) default(realprecision, 100); (6*Euler^2 +Pi^2)/12 \\ G. C. Greubel, Feb 01 2019
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (6*EulerGamma(R)^2 + Pi(R)^2)/12; // G. C. Greubel, Feb 01 2019
(Sage) numerical_approx((6*euler_gamma^2 + pi^2)/12, digits=100) # G. C. Greubel, Feb 01 2019
CROSSREFS
The structure of the G(k,n=1) formulas lead (replace gamma with G and Zeta with Z) to A036039. - Johannes W. Meijer and Nico Baken, Aug 13 2009
Cf. A081855.
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Feb 29 2004
STATUS
approved