login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185338
McKay-Thompson series of class 16B for the Monster group with a(0) = -2.
3
1, -2, 0, 0, 2, 0, 0, 0, -1, 0, 0, 0, -2, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, -4, 0, 0, 0, -4, 0, 0, 0, 5, 0, 0, 0, 8, 0, 0, 0, -8, 0, 0, 0, -10, 0, 0, 0, 11, 0, 0, 0, 12, 0, 0, 0, -15, 0, 0, 0, -18, 0, 0, 0, 22, 0, 0, 0, 26, 0, 0, 0, -29, 0, 0, 0, -34, 0, 0, 0
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 6 of the 15 generalized eta-quotients listed in Table I of Yang 2004. - Michael Somos, Jul 21 2014
A generator (Hauptmodul) of the function field associated with congruence subgroup Gamma_0(16). [Yang 2004] - Michael Somos, Jul 21 2014
LINKS
Y. Yang, Transformation formulas for generalized Dedekind eta functions, Bull. London Math. Soc. 36 (2004), no. 5, 671-682. See p. 679, Table 1.
FORMULA
Expansion of q^(-1) * phi(-q) / psi(q^8) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q)^2 * eta(q^8) / (eta(q^2) * eta(q^16)^2) in powers of q.
Euler transform of period 16 sequence [ -2, -1, -2, -1, -2, -1, -2, -2, -2, -1, -2, -1, -2, -1, -2, 0, ...].
G.f. A(q) satisfies 0 = f(A(q), A(q^2)) where f(u, v) = v^2 - u * (u + 4) * (v + 2).
G.f. A(q) satisfies 0 = f(A(q), A(q^3)) where f(u, v) = (u - v)^4 - u * (u^2 + 6*u + 8) * v * (v^2 + 6*v + 8).
G.f. A(q) satisfies 0 = f(A(q), A(q^4)) where f(u, v) = v^4 - u * (u + 4) * (u^2 + 4*u + 8) * (v + 2) * (v^2 + 4*v + 8).
G.f. A(q) satisfies 0 = f(A(q), A(q^5)) where f(u, v) = (u - v)^6 - u * (u + 2) * (u + 4) * (u^2 + 4*u + 8) * v * (v + 2) * (v + 4) * (v^2 + 4*v + 8).
G.f. A(q) satisfies 0 = f(A(q), A(q^2), A(q^3), A(q^6)) where f(u1, u2, u3, u6) = 2 * (u1 - u3)^2 - 2 * u2*u6 + u2*u3 * (u3 + 4) + u1*u6 * (u1 + 4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 8 g(t) where q = exp(2 Pi i t) and g() is the g.f. of A123655.
G.f.: -2 + (1/q) * Product_{k>0} ((1 + q^(8*k - 4)) / (1 + q^(8*k)))^2.
a(4*n - 1) = A029839(n). a(4*n) = 0 unless n=0. a(4*n + 1) = a(4*n + 2) = 0.
Convolution inverse of A123655.
EXAMPLE
G.f. = 1/q - 2 + 2*q^3 - q^7 - 2*q^11 + 3*q^15 + 2*q^19 - 4*q^23 - 4*q^27 + 5*q^31 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2 EllipticTheta[ 4, 0, q] / EllipticTheta[ 2, 0, q^4], {q, 0, n}]; (* Michael Somos, Jul 21 2014 *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^8 + A) / (eta(x^2 + A) * eta(x^16 + A)^2), n))};
CROSSREFS
Sequence in context: A243828 A034949 A263767 * A208603 A340988 A134013
KEYWORD
sign
AUTHOR
Michael Somos, Feb 28 2012
STATUS
approved