login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263767
Expansion of phi(-x) * psi(-x^8) * chi(x^24) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
2
1, -2, 0, 0, 2, 0, 0, 0, -1, 0, 0, 0, -2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, -1, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, 0, 0, -4, 0, 0, 4, 0, 0, 0, 0, -4, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q)^2 * eta(q^8) * eta(q^32) * eta(q^48)^2 / (eta(q^2) * eta(q^16) * eta(q^24) * eta(q^96)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (288 t)) = 10368^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A256574.
a(4*n + 2) = a(4*n + 3) = a(8*n + 5) = 0.
EXAMPLE
G.f. = 1 - 2*x + 2*x^4 - x^8 - 2*x^12 + 2*x^16 + 2*x^17 - 2*x^24 - 2*x^25 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^24, x^48] EllipticTheta[ 2, Pi/4, x^4] EllipticTheta[ 4, 0, x] / (2^(1/2) x), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^8 + A) * eta(x^32 + A) * eta(x^48 + A)^2 / (eta(x^2 + A) * eta(x^16 + A) * eta(x^24 + A) * eta(x^96 + A)), n))};
(PARI) q='q+O('q^99); Vec(eta(q)^2*eta(q^8)*eta(q^32)*eta(q^48)^2/(eta(q^2)*eta(q^16)* eta(q^24)*eta(q^96))) \\ Altug Alkan, Jul 31 2018
CROSSREFS
Cf. A256574.
Sequence in context: A258034 A243828 A034949 * A185338 A208603 A340988
KEYWORD
sign
AUTHOR
Michael Somos, Oct 25 2015
STATUS
approved