login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156807
Number of distinct interlace polynomials Q of graphs of order n.
0
1, 2, 3, 6, 11, 24, 52, 152, 521, 2793, 26178, 515131
OFFSET
1,2
REFERENCES
M. Aigner and H. van der Holst, Interlace polynomials, Linear Algebra Appl., 377 (2004), 11-30.
LINKS
M. Aigner and H. van der Holst, Interlace polynomials, Linear Algebra Appl., 377 (2004), 11-30.
R. Arratia, B. Bollobas, and G. B. Sorkin, The Interlace Polynomial of a Graph, J. Combin. Theory Ser. B, 92 (2004), 199-233.
L. E. Danielsen and M. G. Parker, Interlace polynomials: Enumeration, unimodality, and connections to codes, arXiv:0804.2576 [math.CO], 2008-2009.
CROSSREFS
Sequence in context: A192573 A284994 A107113 * A032256 A324765 A208602
KEYWORD
hard,more,nonn
AUTHOR
Lars Eirik Danielsen (larsed(AT)ii.uib.no), Feb 16 2009
STATUS
approved