%I #8 Sep 04 2018 08:03:27
%S 1,2,3,6,11,24,52,152,521,2793,26178,515131
%N Number of distinct interlace polynomials Q of graphs of order n.
%D M. Aigner and H. van der Holst, Interlace polynomials, Linear Algebra Appl., 377 (2004), 11-30.
%H M. Aigner and H. van der Holst, <a href="https://doi.org/10.1016/j.laa.2003.06.010">Interlace polynomials</a>, Linear Algebra Appl., 377 (2004), 11-30.
%H R. Arratia, B. Bollobas, and G. B. Sorkin, <a href="http://arxiv.org/abs/math.CO/0209045">The Interlace Polynomial of a Graph</a>, J. Combin. Theory Ser. B, 92 (2004), 199-233.
%H L. E. Danielsen and M. G. Parker, <a href="https://arxiv.org/abs/0804.2576">Interlace polynomials: Enumeration, unimodality, and connections to codes</a>, arXiv:0804.2576 [math.CO], 2008-2009.
%K hard,more,nonn
%O 1,2
%A Lars Eirik Danielsen (larsed(AT)ii.uib.no), Feb 16 2009