OFFSET
1,5
COMMENTS
An unlabeled rooted tree is fully anti-transitive if no proper terminal subtree of any branch of the root is a branch of the root. It is an identity tree if there are no repeated branches directly under the same root.
LINKS
EXAMPLE
The a(1) = 1 through a(7) = 6 fully anti-transitive rooted identity trees:
o (o) ((o)) (((o))) ((o(o))) (((o(o)))) ((o(o(o))))
((((o)))) ((o((o)))) ((((o(o)))))
(((((o))))) (((o)((o))))
(((o((o)))))
((o(((o)))))
((((((o))))))
MATHEMATICA
idall[n_]:=If[n==1, {{}}, Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])], UnsameQ@@#&]];
Table[Length[Select[idall[n], Intersection[Union@@Rest[FixedPointList[Union@@#&, #]], #]=={}&]], {n, 10}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Mar 17 2019
STATUS
approved