login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274493
Number of bargraphs of semiperimeter n having no horizontal segments of length 1 (n>=2). By a horizontal segment of length 1 we mean a horizontal step that is not adjacent to any other horizontal step.
1
0, 1, 2, 3, 6, 13, 27, 57, 123, 267, 584, 1289, 2864, 6399, 14373, 32435, 73498, 167175, 381551, 873541, 2005622, 4616895, 10653607, 24638263, 57097885, 132575577, 308378460, 718506295, 1676706422, 3918515001, 9170350093, 21488961641, 50417138776, 118425429213, 278476687643
OFFSET
2,3
LINKS
M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
FORMULA
a(n) = A274491(n,0).
G.f.: g(z)=(1-2z+z^2-2z^3-sqrt((1-z)(1-3z+3z^2-5z^3+4z^4-4z^5)))/(2z^2).
D-finite with recurrence (n+2)*a(n) +2*(-2*n-1)*a(n-1) +6*(n-1)*a(n-2) +4*(-2*n+5)*a(n-3) +9*(n-4)*a(n-4) +4*(-2*n+11)*a(n-5) +4*(n-7)*a(n-6)=0. - R. J. Mathar, Jul 22 2022
EXAMPLE
a(4)=2 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1],[1,2],[2,1],[2,2],[3] and the corresponding pictures give the values 0,2,2,0,1 for the number of horizontal segments of length 1.
MAPLE
g:=((1-2*z+z^2-2*z^3-sqrt((1-z)*(1-3*z+3*z^2-5*z^3+4*z^4-4*z^5)))*(1/2))/z^2: gser:=series(g, z=0, 40): seq(coeff(gser, z, n), n=2..36);
CROSSREFS
Sequence in context: A127601 A030038 A030040 * A324770 A075853 A132045
KEYWORD
nonn,easy
AUTHOR
STATUS
approved