The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274496 Triangle read by rows: T(n,k) is the number of binary words of length n having degree of asymmetry equal to k (n >= 0; 0 <= k <= n/2). 3
 1, 2, 2, 2, 4, 4, 4, 8, 4, 8, 16, 8, 8, 24, 24, 8, 16, 48, 48, 16, 16, 64, 96, 64, 16, 32, 128, 192, 128, 32, 32, 160, 320, 320, 160, 32, 64, 320, 640, 640, 320, 64, 64, 384, 960, 1280, 960, 384, 64, 128, 768, 1920, 2560, 1920, 768, 128 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The degree of asymmetry of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. Example: the degree of asymmetry of (2,7,6,4,5,7,3) is 2, counting the pairs (2,3) and (6,5). A sequence is palindromic if and only if its degree of asymmetry is 0. Sum_{k>=0} k*T(n,k) = A274497(n). LINKS FORMULA T(n,k) = 2^ceiling(n/2)*binomial(floor(n/2),k). G.f.:  G(t,z) = (1 + 2z)/(1 - 2(1 + t)z^2). The row generating polynomials P[n] satisfy P[n] = 2(1 + t)P[n-2] (n >= 2). Easy to see if we note that the binary words of length n (n >= 2) are 0w0, 0w1, 1w0, and 1w1, where w is a binary word of length n-2. EXAMPLE From Andrew Howroyd, Jan 10 2018: (Start) Triangle begins:    1;    2;    2,   2;    4,   4;    4,   8,   4;    8,  16,   8;    8,  24,  24,   8;   16,  48,  48,  16;   16,  64,  96,  64,  16;   32, 128, 192, 128,  32;   32, 160, 320, 320, 160, 32;   ... (End) T(4,0) = 4 because we have 0000, 0110, 1001, and 1111. T(4,1) = 8 because we have 0001, 0010, 0100, 1000, 0111, 1011, 1101, and 1110. T(4,2) = 4 because we have 0011, 0101, 1010, and 1100. MAPLE T := proc(n, k) options operator, arrow: 2^ceil((1/2)*n)*binomial(floor((1/2)*n), k) end proc: for n from 0 to 15 do seq(T(n, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form MATHEMATICA Table[2^Ceiling[n/2] Binomial[Floor[n/2], k], {n, 0, 13}, {k, 0, n/2}] // Flatten (* Michael De Vlieger, Jan 11 2018 *) PROG (PARI) T(n, k) = 2^ceil(n/2)*binomial(floor(n/2), k); for(n=0, 10, for(k=0, n\2, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Jan 10 2018 CROSSREFS Cf. A274497, A274498, A274499. Sequence in context: A240046 A001584 A180019 * A112801 A173862 A089873 Adjacent sequences:  A274493 A274494 A274495 * A274497 A274498 A274499 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, Jul 27 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 30 18:46 EDT 2020. Contains 333127 sequences. (Running on oeis4.)