The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274495 The length of the longest initial sequence of the form UHUH..., summed over all bargraphs having semiperimeter n (n>=2). 1
 2, 3, 9, 23, 62, 171, 482, 1384, 4036, 11924, 35619, 107407, 326521, 999675, 3079634, 9539366, 29693294, 92831327, 291366477, 917765199, 2900217452, 9192097510, 29213057684, 93073003438, 297215560553, 951144390092, 3049877146281, 9797605279905 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 LINKS M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112. Emeric Deutsch, S Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088, 2016 FORMULA G.f.: g(z) = ((1-z)(1-4z^2-3z^3-2z^4-(1+z-z^2-2z^3)Q)/(2z(1-z)), where Q = sqrt((1-z)(1-3z-z^2-z^3)): a(n) = Sum(k*A274494(n,k), k>=1). EXAMPLE a(4) = 9 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and the corresponding drawings show that the sum of the lengths of their longest initial sequence of the form UHUH... is 2+4+1+1+1. MAPLE Q := sqrt((1-z)*(1-3*z-z^2-z^3)): g := (((1-z)*(1-4*z^2-3*z^3-2*z^4)-(1+z-z^2-2*z^3)*Q)*(1/2))/(z*(1-z)): gser := series(g, z = 0, 38): seq(coeff(gser, z, n), n = 2 .. 34); MATHEMATICA terms = 28; g[z_] = (((1-z)(1 - 4z^2 - 3z^3 - 2z^4) - (1 + z - z^2 - 2z^3)*Q)(1/2))/(z (1-z)) /. Q -> Sqrt[(1-z)(1 - 3z - z^2 - z^3)]; Drop[CoefficientList[g[z] + O[z]^(terms+2), z], 2] (* Jean-François Alcover, Aug 07 2018 *) CROSSREFS Cf. A082582, A274494. Sequence in context: A111240 A298407 A227252 * A299705 A318231 A242271 Adjacent sequences:  A274492 A274493 A274494 * A274496 A274497 A274498 KEYWORD nonn AUTHOR Emeric Deutsch, Sergi Elizalde, Aug 26 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 17:37 EDT 2020. Contains 334684 sequences. (Running on oeis4.)