login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of bargraphs of semiperimeter n having no horizontal segments of length 1 (n>=2). By a horizontal segment of length 1 we mean a horizontal step that is not adjacent to any other horizontal step.
1

%I #11 Jul 22 2022 10:20:49

%S 0,1,2,3,6,13,27,57,123,267,584,1289,2864,6399,14373,32435,73498,

%T 167175,381551,873541,2005622,4616895,10653607,24638263,57097885,

%U 132575577,308378460,718506295,1676706422,3918515001,9170350093,21488961641,50417138776,118425429213,278476687643

%N Number of bargraphs of semiperimeter n having no horizontal segments of length 1 (n>=2). By a horizontal segment of length 1 we mean a horizontal step that is not adjacent to any other horizontal step.

%H M. Bousquet-Mélou and A. Rechnitzer, <a href="http://dx.doi.org/10.1016/S0196-8858(02)00553-5">The site-perimeter of bargraphs</a>, Adv. in Appl. Math. 31 (2003), 86-112.

%F a(n) = A274491(n,0).

%F G.f.: g(z)=(1-2z+z^2-2z^3-sqrt((1-z)(1-3z+3z^2-5z^3+4z^4-4z^5)))/(2z^2).

%F D-finite with recurrence (n+2)*a(n) +2*(-2*n-1)*a(n-1) +6*(n-1)*a(n-2) +4*(-2*n+5)*a(n-3) +9*(n-4)*a(n-4) +4*(-2*n+11)*a(n-5) +4*(n-7)*a(n-6)=0. - _R. J. Mathar_, Jul 22 2022

%e a(4)=2 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1],[1,2],[2,1],[2,2],[3] and the corresponding pictures give the values 0,2,2,0,1 for the number of horizontal segments of length 1.

%p g:=((1-2*z+z^2-2*z^3-sqrt((1-z)*(1-3*z+3*z^2-5*z^3+4*z^4-4*z^5)))*(1/2))/z^2: gser:=series(g,z=0,40): seq(coeff(gser,z,n),n=2..36);

%Y Cf. A082582, A274491.

%K nonn,easy

%O 2,3

%A _Emeric Deutsch_ and _Sergi Elizalde_, Jun 27 2016