|
|
A282618
|
|
Number of non-self-conjugate separable solutions of X + Y = 2Z (integer, disjoint triples from {1,2,3,...,3n}).
|
|
5
|
|
|
0, 0, 2, 6, 26, 108, 492, 2562, 14790, 98874, 720614, 5908394, 52572682, 516141316, 5422012074, 61889630476, 749456000504
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
An inseparable solution is one in which "there is no j such that the first j of the triples are a partition of 1, ..., 3j" (see A202705).
A self-conjugate solution is one in which for every triple (a, b, c) in the partition there exists a "conjugate" triple (m-a, m-b, m-c) or (m-b, m-a, m-c) where m = 3n+1.
| separable | inseparable | either |
-------------------+-----------+-------------+---------+
self-conjugate | A282615 | A279197 | A282616 |
non-self-conjugate | A282618 | A282617 | A282619 |
either | A279199 | A202705 | A104429 |
|
|
LINKS
|
Table of n, a(n) for n=1..17.
|
|
FORMULA
|
a(n) = A282619(n) - A282617(n).
a(n) = A279199(n) - A282615(n).
|
|
EXAMPLE
|
For n = 3 the a(3) = 2 solutions are:
(5,9,7),(4,8,6),(1,3,2), and
(7,9,8),(2,6,4),(1,5,3).
|
|
CROSSREFS
|
Cf. A104429, A202705, A279197, A279199, A282615, A282616, A282617, A282619.
Sequence in context: A323265 A285024 A192403 * A192435 A296217 A050890
Adjacent sequences: A282615 A282616 A282617 * A282619 A282620 A282621
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Peter Kagey, Feb 19 2017
|
|
EXTENSIONS
|
a(10)-a(16) from Fausto A. C. Cariboni, Feb 27 2017
a(17) from Fausto A. C. Cariboni, Mar 22 2017
|
|
STATUS
|
approved
|
|
|
|