login
A296217
Solution of the complementary equation a(n) = a(1)*b(n-2) + a(2)*b(n-3) + ... + a(n-1)*b(0), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
4
1, 2, 6, 26, 112, 484, 2088, 9008, 38862, 167658, 723308, 3120486, 13462360, 58079138, 250564260, 1080981064, 4663554414, 20119445656, 86799050160, 374467330636, 1615522076050, 6969664279584, 30068434774274, 129720849313094, 559639996988064, 2414391579204576
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295862 for a guide to related sequences.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) =1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 4
a(2) = a(1)*b(0) = 2
Complement: (b(n)) = (3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
MATHEMATICA
a[0] = 1; a[1] = 2; b[0] = 3;
a[n_] := a[n] = Sum[a[k]*b[n - k - 1], {k, 1, n - 1}];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
u = Table[a[n], {n, 0, 200}]; (* A296217 *)
Table[b[n], {n, 0, 20}]
N[Table[a[n]/a[n - 1], {n, 1, 200, 10}], 200];
RealDigits[Last[t], 10][[1]] (* A296218 *)
CROSSREFS
Sequence in context: A192403 A282618 A192435 * A050890 A114710 A230245
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 08 2017
STATUS
approved