login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282613
Number of inequivalent 3 X 3 matrices with entries in {1,2,3,..,n} up to rotations.
13
0, 1, 140, 4995, 65824, 489125, 2521476, 10092775, 33562880, 96870249, 250025500, 589527851, 1290008160, 2651218765, 5165397524, 9611031375, 17180133376, 29647326545, 49590297900, 80672546899, 128000804000, 198571037301, 301818598180, 450289780535
OFFSET
0,3
COMMENTS
Cycle index of symmetry group (cyclic rotation group of order 4 acting on the 9 cells of the square) is (2s(4)^2*s(1) + s(2)^4*s(1) + s(1)^9)/4.
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = n^3*(n^2+1)*(n^4-n^2+2)/4.
G.f.: x*(1 + 130*x + 3640*x^2 + 22054*x^3 + 39070*x^4 + 22054*x^5 + 3640*x^6 + 130*x^7 + x^8) / (1 - x)^10. - Colin Barker, Feb 23 2017
EXAMPLE
The number of 3 X 3 binary matrices up to rotations is 140.
MATHEMATICA
Table[(2n^3+n^5+n^9)/4, {n, 0, 24}]
PROG
(PARI) concat(0, Vec(x*(1 + 130*x + 3640*x^2 + 22054*x^3 + 39070*x^4 + 22054*x^5 + 3640*x^6 + 130*x^7 + x^8) / (1 - x)^10 + O(x^30))) \\ Colin Barker, Feb 23 2017
CROSSREFS
Row n=3 of A343095.
Cf. A006528 (2 x 2 version), A283027 (4 X 4 version).
Sequence in context: A128193 A061607 A223349 * A202786 A035820 A075915
KEYWORD
nonn,easy
AUTHOR
David Nacin, Feb 19 2017
STATUS
approved