login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283027
Number of inequivalent 4 X 4 matrices with entries in {1,2,3,...,n} up to rotations.
10
0, 1, 16456, 10763361, 1073758336, 38147070625, 705277897416, 8308234084801, 70368748374016, 463255057977921, 2500000025005000, 11487432519490081, 46221064831264896, 166354152499741921, 544488334821309256, 1642102089568970625, 4611686019501162496
OFFSET
0,3
COMMENTS
Cycle index of cyclic group C4 acting on the 16 entries is (2s(4)^4 + s(2)^8 + s(1)^16)/24.
LINKS
Index entries for linear recurrences with constant coefficients, signature (17,-136,680,-2380,6188,-12376,19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1).
FORMULA
a(n) = n^4*(n^4 + 1)*(n^8 - n^4 + 2)/4.
From Chai Wah Wu, Dec 07 2018: (Start)
a(n) = 17*a(n-1) - 136*a(n-2) + 680*a(n-3) - 2380*a(n-4) + 6188*a(n-5) - 12376*a(n-6) + 19448*a(n-7) - 24310*a(n-8) + 24310*a(n-9) - 19448*a(n-10) + 12376*a(n-11) - 6188*a(n-12) + 2380*a(n-13) - 680*a(n-14) + 136*a(n-15) - 17*a(n-16) + a(n-17) for n > 16.
G.f.: -x*(x + 1)*(x^14 + 16438*x^13 + 10467307*x^12 + 882551228*x^11 + 20463257081*x^10 + 175065647018*x^9 + 626805100059*x^8 + 968894657736*x^7 + 626805100059*x^6 + 175065647018*x^5 + 20463257081*x^4 + 882551228*x^3 + 10467307*x^2 + 16438*x + 1)/(x - 1)^17. (End)
E.g.f.: (1/4)*x*(x^15 + 120*x^14 + 6020*x^13 + 165620*x^12 + 2757118*x^11 + 28936908*x^10 + 193754990*x^9 + 820784250*x^8 + 2141764054*x^7 + 3281882632*x^6 + 2734926824*x^5 + 1096191600*x^4 + 171800604*x^3 + 7142664*x^2 + 32908*x + 4)*exp(x). - Stefano Spezia, Dec 07 2018
a(n) = n^4*(n^12 + n^4 + 2)/4. - Chai Wah Wu, Jan 24 2023
EXAMPLE
For n=2 we get a(2)=16456 inequivalent 4 X 4 binary matrices up to rotations.
MAPLE
[n^4*(n^4+1)*(n^8-n^4+2)/4$n=0..18]; # Muniru A Asiru, Dec 07 2018
MATHEMATICA
Table[n^4*(n^4 + 1)*(n^8 - n^4 + 2)/4, {n, 0, 30}]
PROG
(PARI) a(n) = n^4*(n^4 + 1)*(n^8 - n^4 + 2)/4; \\ Indranil Ghosh, Feb 27 2017
(Python) def A283027(n) : return n**4*(n**4 + 1)*(n**8 - n**4 + 2)/4 # Indranil Ghosh, Feb 27 2017
(Python)
def A283027(n): return n**4*(n**4*(n**8+1)+2)>>2 # Chai Wah Wu, Jan 24 2023
(Magma) [n^4*(n^4+1)*(n^8-n^4+2)/4: n in [0..20]]; // G. C. Greubel, Dec 07 2018
(Sage) [n^4*(n^4+1)*(n^8-n^4+2)/4 for n in range(20)] # G. C. Greubel, Dec 07 2018
(GAP) List([0..20], n -> n^4*(n^4+1)*(n^8-n^4+2)/4); # G. C. Greubel, Dec 07 2018
CROSSREFS
Row n=4 of A343095.
Cf. A283031 (5 X 5 version), A282613 (3 X 3 version), A006528 (2 X 2 version).
Sequence in context: A250844 A076166 A168665 * A031829 A057680 A157796
KEYWORD
nonn,easy
AUTHOR
David Nacin, Feb 27 2017
STATUS
approved