login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283026
Number of inequivalent 4 X 4 matrices with entries in {1,2,3,..,n} up to row permutations.
7
0, 1, 3876, 1929501, 183181376, 6419043125, 118091211876, 1388168405001, 11745311589376, 77279801651001, 416916712502500, 1915356782994501, 7705740009485376, 27731516944463501, 90762229896563876, 273716119247180625, 768684707117285376, 2027695320242670001
OFFSET
0,3
COMMENTS
Cycle index of symmetry group S4 acting on the 16 entries is (6*s(2)^4s(1)^8 + 8*s(3)^4s(1)^4 + 3*s(2)^8 + 6*s(4)^4 + s(1)^{16})/24.
FORMULA
a(n) = n^4*(n^4 + 1)*(n^4 + 2)*(n^4 + 3)/24.
From Chai Wah Wu, Dec 07 2018: (Start)
a(n) = 17*a(n-1) - 136*a(n-2) + 680*a(n-3) - 2380*a(n-4) + 6188*a(n-5) - 12376*a(n-6) + 19448*a(n-7) - 24310*a(n-8) + 24310*a(n-9) - 19448*a(n-10) + 12376*a(n-11) - 6188*a(n-12) + 2380*a(n-13) - 680*a(n-14) + 136*a(n-15) - 17*a(n-16) + a(n-17) for n > 16.
G.f.: -x*(x + 1)*(x^14 + 3858*x^13 + 1859887*x^12 + 149046428*x^11 + 3415692141*x^10 + 29161611758*x^9 + 104450960739*x^8 + 161533106376*x^7 + 104450960739*x^6 + 29161611758*x^5 + 3415692141*x^4 + 149046428*x^3 + 1859887*x^2 + 3858*x + 1)/(x - 1)^17. (End)
EXAMPLE
For n=2 we get a(2)=3876 inequivalent 4x4 binary matrices up to row permutations.
MATHEMATICA
Table[n^4*(n^4 + 1)*(n^4 + 2)*(n^4 + 3)/24, {n, 0, 30}]
PROG
(PARI) a(n) = n^4*(n^4 + 1)*(n^4 + 2)*(n^4 + 3)/24; \\ Indranil Ghosh, Feb 27 2017
(Python) def A283026(n) : return n**4*(n**4 + 1)*(n**4 + 2)*(n**4 + 3)/24 # Indranil Ghosh, Feb 27 2017
CROSSREFS
Cf. A282613, A282614, A283027, A283028, A283029, A283031, A283032, A283033. A283030 (5x5 version). A282612 (3x3 version). A037270 (2x2 version).
Sequence in context: A108005 A065696 A246735 * A014891 A253484 A253479
KEYWORD
easy,nonn
AUTHOR
David Nacin, Feb 27 2017
STATUS
approved