login
A283025
Remainder when sum of first n terms of A005185 is divided by n.
6
0, 0, 1, 3, 0, 2, 5, 0, 3, 6, 9, 2, 6, 10, 1, 5, 10, 16, 3, 9, 15, 21, 4, 13, 20, 1, 9, 17, 25, 3, 14, 22, 30, 7, 18, 27, 0, 11, 21, 32, 3, 14, 26, 38, 5, 16, 27, 46, 8, 19, 35, 49, 8, 23, 38, 51, 11, 25, 41, 57, 12, 27, 50, 2, 15, 35, 52, 67, 19, 40, 58, 5, 25, 44, 64, 7, 28, 47, 67, 9, 31, 52, 73, 13, 34, 56, 80, 16, 38, 62, 86, 18
OFFSET
1,4
COMMENTS
Numbers n such that a(n) = 0 are 1, 2, 5, 8, 37, 99, 1580, 42029, ...
Sequence is a mixture of regularity and irregularity. - Douglas Hofstadter, Mar 03 2017
FORMULA
a(n) = (Sum_{k=1..n} A005185(k)) mod n.
a(n) = A076268(n) mod n.
EXAMPLE
a(4) = 3 since Sum_{k=1..4} A005185(k) = 1 + 1 + 2 + 3 = 7 and remainder when 7 is divided by 4 is 3.
MAPLE
A005185:= proc(n) option remember; procname(n-procname(n-1)) +procname(n-procname(n-2)) end proc:
A005185(1):= 1: A005185(2):= 1:
L:= ListTools[PartialSums](map(A005185, [$1..1000])):
seq(L[i] mod i, i=1..1000); # Robert Israel, Feb 28 2017
MATHEMATICA
h[1]=h[2]=1; h[n_]:=h[n]= h[n-h[n-1]] + h[n-h[n-2]]; Mod[ Accumulate[h /@ Range[100]], Range[100]] (* Giovanni Resta, Feb 27 2017 *)
PROG
(PARI) a=vector(1000); a[1]=a[2]=1; for(n=3, #a, a[n]=a[n-a[n-1]]+a[n-a[n-2]]); vector(#a, n, sum(k=1, n, a[k]) % n)
(PARI) first(n)=my(v=vector(n), s); v[1]=v[2]=1; for(k=3, n, v[k]=v[k-v[k-1]]+v[k-v[k-2]]); for(k=1, n, s+=v[k]; v[k]=s%k); v \\ after Charles R Greathouse IV at A282891
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Altug Alkan, Feb 27 2017
STATUS
approved