login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283023
Expansion of f(-x, -x^5)^2 / (f(x^2, x^10) * f(x^6, x^18)) in powers of x where f(, ) is Ramanujan's general theta function.
1
1, -2, 0, 2, 0, -4, 1, 6, 0, -8, 0, 12, -1, -18, 0, 24, 0, -32, 0, 44, 0, -58, 0, 76, 1, -100, 0, 128, 0, -164, 0, 210, 0, -264, 0, 332, -1, -416, 0, 516, 0, -640, -1, 790, 0, -968, 0, 1184, 2, -1444, 0, 1752, 0, -2120, 1, 2560, 0, -3078, 0, 3692, -2, -4420, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of chi(-x)^2 * chi(x^3)^2 * chi(-x^12) / chi(x^2) in powers of x where chi() is a Ramanujan theta function.
Expansion of phi(-x) * chi(x^3)^2 * chi(-x^12) / phi(-x^4) in powers of x where phi(), chi() are Ramanujan theta functions.
Expansion of phi(-x) * phi(x^3) / (phi(-x^4) * psi(-x^6)) ih powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(3/4) * eta(q)^2 * eta(q^6)^4 * eta(q^8) / (eta(q^2) * eta(q^3)^2 * eta(q^4)^2 * eta(q^12) * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [-2, -1, 0, 1, -2, -3, -2, 0, 0, -1, -2, 0, -2, -1, 0, 0, -2, -3, -2, 1, 0, -1, -2, 0, ...].
a(n) = A134178(2*n). a(6*n + 2) = A(6*n + 4) = 0.
a(2*n + 1) = -2 * A083365(n). a(4*n + 1) = -2 * A081055(n). a(4*n + 3) = 2 * A081056(n).
a(6*n) = A029838(n). a(12*n) = A258741(n). a(12*n + 6) = A259774(n). a(24*n + 12) = - A258939(n).
EXAMPLE
G.f. = 1 - 2*x + 2*x^3 - 4*x^5 + x^6 + 6*x^7 - 8*x^9 + 12*x^11 + ...
G.f. = q^-3 - 2*q + 2*q^9 - 4*q^17 + q^21 + 6*q^25 - 8*q^33 + 12*q^41 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^2 QPochhammer[ -x^3, x^6]^2 QPochhammer[ x^12, x^24] / QPochhammer[ -x^2, x^4], {x, 0, n}];
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] QPochhammer[ -x^3, x^6]^2 QPochhammer[ x^12, x^24] / EllipticTheta[ 4, 0, x^4], {x, 0, n}];
a[ n_] := SeriesCoefficient[ 2^(1/2) x^(3/4) EllipticTheta[ 4, 0, x] EllipticTheta[ 3, 0, x^3] / (EllipticTheta[ 4, 0, x^4] EllipticTheta[ 2, Pi/4, x^3]), {x, 0, n}] // Simplify;
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^6 + A)^4 * eta(x^8 + A) / (eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^4 + A)^2 * eta(x^12 + A) * eta(x^24 + A)), n))};
(PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q)^2*eta(q^6)^4*eta(q^8)/(eta(q^2)*eta(q^3)^2*eta(q^4)^2*eta(q^12)*eta(q^24)))} \\ Altug Alkan, Mar 21 2018
KEYWORD
sign
AUTHOR
Michael Somos, Feb 26 2017
STATUS
approved