OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of chi(-x)^2 * chi(x^3)^2 * chi(-x^12) / chi(x^2) in powers of x where chi() is a Ramanujan theta function.
Expansion of phi(-x) * chi(x^3)^2 * chi(-x^12) / phi(-x^4) in powers of x where phi(), chi() are Ramanujan theta functions.
Expansion of phi(-x) * phi(x^3) / (phi(-x^4) * psi(-x^6)) ih powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(3/4) * eta(q)^2 * eta(q^6)^4 * eta(q^8) / (eta(q^2) * eta(q^3)^2 * eta(q^4)^2 * eta(q^12) * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [-2, -1, 0, 1, -2, -3, -2, 0, 0, -1, -2, 0, -2, -1, 0, 0, -2, -3, -2, 1, 0, -1, -2, 0, ...].
a(n) = A134178(2*n). a(6*n + 2) = A(6*n + 4) = 0.
EXAMPLE
G.f. = 1 - 2*x + 2*x^3 - 4*x^5 + x^6 + 6*x^7 - 8*x^9 + 12*x^11 + ...
G.f. = q^-3 - 2*q + 2*q^9 - 4*q^17 + q^21 + 6*q^25 - 8*q^33 + 12*q^41 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^2 QPochhammer[ -x^3, x^6]^2 QPochhammer[ x^12, x^24] / QPochhammer[ -x^2, x^4], {x, 0, n}];
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] QPochhammer[ -x^3, x^6]^2 QPochhammer[ x^12, x^24] / EllipticTheta[ 4, 0, x^4], {x, 0, n}];
a[ n_] := SeriesCoefficient[ 2^(1/2) x^(3/4) EllipticTheta[ 4, 0, x] EllipticTheta[ 3, 0, x^3] / (EllipticTheta[ 4, 0, x^4] EllipticTheta[ 2, Pi/4, x^3]), {x, 0, n}] // Simplify;
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^6 + A)^4 * eta(x^8 + A) / (eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^4 + A)^2 * eta(x^12 + A) * eta(x^24 + A)), n))};
(PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q)^2*eta(q^6)^4*eta(q^8)/(eta(q^2)*eta(q^3)^2*eta(q^4)^2*eta(q^12)*eta(q^24)))} \\ Altug Alkan, Mar 21 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Feb 26 2017
STATUS
approved