|
|
A250844
|
|
Primes of the form 7^x + y^7 with x, y > 0.
|
|
2
|
|
|
16433, 33191, 134033, 6044737, 40633543, 50353607, 268435463, 268437857, 268452263, 274200257, 1977343127, 2245762199, 2494358231, 4471684631, 4586471767, 13841567137, 21870016807, 21870117649, 52523350487, 54500676887, 78364166497, 92205451297, 97157445863
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Conjecture: a(n+1)>=a(n)+42, with equality for infinitely many n,
namely those of the form a(n)=7^1+y^7, a(n+1)=7^2+y^7. - Robert Israel, May 09 2018
|
|
LINKS
|
|
|
EXAMPLE
|
16433 is in this sequence because 16433 is prime and 7^2+3^7 = 16433.
33191 is in this sequence because 33191 is prime and 7^5+4^7 = 33191.
|
|
MAPLE
|
N:= 10^12: # to get all terms <= N
sort(select(isprime, [seq(seq(7^x+y^7, y=2..floor((N-7^x)^(1/7)), 2), x=1..floor(log[7](N)))])); # Robert Israel, May 09 2018
|
|
MATHEMATICA
|
f[x_, y_]:= 7^x + y^7; lst={}; Do[p=f[x, y]; If[PrimeQ[p], AppendTo[lst, p]], {y, 50}, {x, 50}]; Take[Union[lst], 30]
With[{nn=40}, Take[Sort[Select[7^#[[1]]+#[[2]]^7&/@Tuples[Range[nn], 2], PrimeQ]], nn]] (* Harvey P. Dale, May 28 2015 *)
|
|
CROSSREFS
|
Cf. similar sequences listed in A250481.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|