Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Jan 25 2023 02:21:14
%S 0,1,16456,10763361,1073758336,38147070625,705277897416,8308234084801,
%T 70368748374016,463255057977921,2500000025005000,11487432519490081,
%U 46221064831264896,166354152499741921,544488334821309256,1642102089568970625,4611686019501162496
%N Number of inequivalent 4 X 4 matrices with entries in {1,2,3,...,n} up to rotations.
%C Cycle index of cyclic group C4 acting on the 16 entries is (2s(4)^4 + s(2)^8 + s(1)^16)/24.
%H G. C. Greubel, <a href="/A283027/b283027.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (17,-136,680,-2380,6188,-12376,19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1).
%F a(n) = n^4*(n^4 + 1)*(n^8 - n^4 + 2)/4.
%F From _Chai Wah Wu_, Dec 07 2018: (Start)
%F a(n) = 17*a(n-1) - 136*a(n-2) + 680*a(n-3) - 2380*a(n-4) + 6188*a(n-5) - 12376*a(n-6) + 19448*a(n-7) - 24310*a(n-8) + 24310*a(n-9) - 19448*a(n-10) + 12376*a(n-11) - 6188*a(n-12) + 2380*a(n-13) - 680*a(n-14) + 136*a(n-15) - 17*a(n-16) + a(n-17) for n > 16.
%F G.f.: -x*(x + 1)*(x^14 + 16438*x^13 + 10467307*x^12 + 882551228*x^11 + 20463257081*x^10 + 175065647018*x^9 + 626805100059*x^8 + 968894657736*x^7 + 626805100059*x^6 + 175065647018*x^5 + 20463257081*x^4 + 882551228*x^3 + 10467307*x^2 + 16438*x + 1)/(x - 1)^17. (End)
%F E.g.f.: (1/4)*x*(x^15 + 120*x^14 + 6020*x^13 + 165620*x^12 + 2757118*x^11 + 28936908*x^10 + 193754990*x^9 + 820784250*x^8 + 2141764054*x^7 + 3281882632*x^6 + 2734926824*x^5 + 1096191600*x^4 + 171800604*x^3 + 7142664*x^2 + 32908*x + 4)*exp(x). - _Stefano Spezia_, Dec 07 2018
%F a(n) = n^4*(n^12 + n^4 + 2)/4. - _Chai Wah Wu_, Jan 24 2023
%e For n=2 we get a(2)=16456 inequivalent 4 X 4 binary matrices up to rotations.
%p [n^4*(n^4+1)*(n^8-n^4+2)/4$n=0..18]; # _Muniru A Asiru_, Dec 07 2018
%t Table[n^4*(n^4 + 1)*(n^8 - n^4 + 2)/4,{n,0,30}]
%o (PARI) a(n) = n^4*(n^4 + 1)*(n^8 - n^4 + 2)/4; \\ _Indranil Ghosh_, Feb 27 2017
%o (Python) def A283027(n) : return n**4*(n**4 + 1)*(n**8 - n**4 + 2)/4 # _Indranil Ghosh_, Feb 27 2017
%o (Python)
%o def A283027(n): return n**4*(n**4*(n**8+1)+2)>>2 # _Chai Wah Wu_, Jan 24 2023
%o (Magma) [n^4*(n^4+1)*(n^8-n^4+2)/4: n in [0..20]]; // _G. C. Greubel_, Dec 07 2018
%o (Sage) [n^4*(n^4+1)*(n^8-n^4+2)/4 for n in range(20)] # _G. C. Greubel_, Dec 07 2018
%o (GAP) List([0..20], n -> n^4*(n^4+1)*(n^8-n^4+2)/4); # _G. C. Greubel_, Dec 07 2018
%Y Row n=4 of A343095.
%Y Cf. A282612, A282614, A283026, A283028, A283029, A283030, A283032, A283033.
%Y Cf. A283031 (5 X 5 version), A282613 (3 X 3 version), A006528 (2 X 2 version).
%K nonn,easy
%O 0,3
%A _David Nacin_, Feb 27 2017