login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283034
Numbers k such that k = (sum of digits of k)^(last digit of k).
0
1, 4913, 19683, 52521875, 24794911296, 68719476736, 271818611107, 1174711139837
OFFSET
1,2
COMMENTS
The check must be done up to 10^22 (then for 23 digits in a number max result can be (23*10)^9 = 4, 6*10^20 < 10^22).
EXAMPLE
1 = 1^1,
4913 = (4+9+1+3)^3,
19683 = (1+9+6+8+3)^3,
52521875 = (5+2+5+2+1+8+7+5)^5.
MATHEMATICA
Union[Reap[nd=1; Sow[1]; While[Ceiling[(10^(nd-1))^(1/9)] <= 9 nd, Do[ Do[v = s^e; If[Mod[v, 10] == e && Plus @@ IntegerDigits@ v == s, Sow[v]], {s, Ceiling[ (10^(nd-1))^(1/e)], Min[ Floor[10^(nd/e)], 9 nd]}], {e, 2, 9}]; nd++]][[2, 1]]] (* all terms, Giovanni Resta, Feb 27 2017 *)
PROG
(VBA)
Sub calcul()
Sheets("Result").Select
Range("A1").Select
For i = 1 To 10000000
Sum = 0
For k = 1 To Len(i)
Sum = Sum + Mid(i, k, 1)
Next
If Sum ^Mid(i, len(i), 1)= i Then
ActiveCell.Value = i
ActiveCell.Offset(1, 0).Select
End If
Next
End Sub
CROSSREFS
KEYWORD
nonn,base,fini,full
AUTHOR
Shmelev Aleksei, Feb 27 2017
EXTENSIONS
a(5)-a(8) from Giovanni Resta, Feb 27 2017
STATUS
approved