login
A283036
Number of n X 2 0..1 arrays with no 1 equal to more than one of its horizontal and vertical neighbors, with the exception of exactly one element.
2
0, 4, 16, 68, 256, 924, 3232, 11044, 37104, 122984, 403280, 1310760, 4228960, 13558932, 43239776, 137251068, 433883696, 1366668772, 4290998336, 13433966724, 41949331616, 130685405648, 406258440928, 1260465716560, 3903760205760
OFFSET
1,2
COMMENTS
Column 2 of A283042.
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) +2*a(n-2) -12*a(n-3) -11*a(n-4) +4*a(n-5) +6*a(n-6) -a(n-8).
Empirical: G.f.: -4*x^2*(x-1)*(1+x)/(x^4-3*x^2-2*x+1)^2. - R. J. Mathar, Mar 02 2017
EXAMPLE
Some solutions for n=4
..1..0. .1..1. .1..1. .1..0. .1..1. .1..1. .0..1. .0..0. .1..1. .1..1
..0..0. .0..1. .1..0. .1..1. .0..0. .0..1. .0..1. .0..1. .1..0. .0..0
..1..1. .0..0. .0..1. .1..0. .0..1. .0..0. .0..1. .1..0. .0..0. .1..0
..0..1. .1..0. .0..1. .0..1. .1..1. .0..1. .1..0. .1..1. .1..0. .1..1
CROSSREFS
Cf. A283042.
Sequence in context: A292759 A351049 A259815 * A307051 A158761 A179611
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 27 2017
STATUS
approved