|
|
A010805
|
|
17th powers: a(n) = n^17.
|
|
8
|
|
|
0, 1, 131072, 129140163, 17179869184, 762939453125, 16926659444736, 232630513987207, 2251799813685248, 16677181699666569, 100000000000000000, 505447028499293771, 2218611106740436992, 8650415919381337933
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (18, -153, 816, -3060, 8568, -18564, 31824, -43758, 48620, -43758, 31824, -18564, 8568, -3060, 816, -153, 18, -1).
|
|
FORMULA
|
Totally multiplicative sequence with a(p) = p^17 for prime p. Multiplicative sequence with a(p^e) = p^(17e). - Jaroslav Krizek, Nov 01 2009
From Ilya Gutkovskiy, Feb 27 2017: (Start)
Dirichlet g.f.: zeta(s-17).
Sum_{n>=1} 1/a(n) = zeta(17) = A013675. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 65535*zeta(17)/65536. - Amiram Eldar, Oct 09 2020
|
|
MATHEMATICA
|
Range[0, 15]^17 (* Harvey P. Dale, Sep 14 2011 *)
|
|
PROG
|
(MAGMA) [n^17: n in [0..15]]; // Vincenzo Librandi, Jun 19 2011
(PARI) for(n=0, 15, print1(n^17, ", ")) \\ Derek Orr, Feb 27 2017
|
|
CROSSREFS
|
Cf. A013675.
Sequence in context: A069278 A190780 A017698 * A138032 A236225 A323546
Adjacent sequences: A010802 A010803 A010804 * A010806 A010807 A010808
|
|
KEYWORD
|
nonn,mult,easy
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
STATUS
|
approved
|
|
|
|