login
A010802
14th powers: a(n) = n^14.
4
0, 1, 16384, 4782969, 268435456, 6103515625, 78364164096, 678223072849, 4398046511104, 22876792454961, 100000000000000, 379749833583241, 1283918464548864, 3937376385699289, 11112006825558016, 29192926025390625, 72057594037927936, 168377826559400929, 374813367582081024
OFFSET
0,3
COMMENTS
Totally multiplicative sequence with a(p) = p^14 for prime p. Multiplicative sequence with a(p^e) = p^(14e). [Jaroslav Krizek, Nov 01 2009]
LINKS
Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
FORMULA
From Ilya Gutkovskiy, Feb 27 2017: (Start)
Dirichlet g.f.: zeta(s-14).
Sum_{n>=1} 1/a(n) = 2*Pi^14/18243225 = A013672. (End)
a(n) = A001015(n)^2. - Michel Marcus, Feb 28 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = 8191*zeta(14)/8192 = 8191*Pi^14/74724249600. - Amiram Eldar, Oct 08 2020
MATHEMATICA
Range[0, 20]^14 (* Harvey P. Dale, Nov 08 2011 *)
PROG
(Magma) [n^14: n in [0..15]]; // Vincenzo Librandi, Jun 19 2011
(PARI) for(n=0, 15, print1(n^14, ", ")) \\ Derek Orr, Feb 27 2017
CROSSREFS
Cf. A013672, A001015 (n^7).
Sequence in context: A223967 A016903 A017692 * A236222 A269207 A016963
KEYWORD
nonn,mult,easy
AUTHOR
STATUS
approved