%I #29 Sep 08 2022 08:44:37
%S 0,1,131072,129140163,17179869184,762939453125,16926659444736,
%T 232630513987207,2251799813685248,16677181699666569,
%U 100000000000000000,505447028499293771,2218611106740436992,8650415919381337933
%N 17th powers: a(n) = n^17.
%H Vincenzo Librandi, <a href="/A010805/b010805.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (18, -153, 816, -3060, 8568, -18564, 31824, -43758, 48620, -43758, 31824, -18564, 8568, -3060, 816, -153, 18, -1).
%F Totally multiplicative sequence with a(p) = p^17 for prime p. Multiplicative sequence with a(p^e) = p^(17e). - _Jaroslav Krizek_, Nov 01 2009
%F From _Ilya Gutkovskiy_, Feb 27 2017: (Start)
%F Dirichlet g.f.: zeta(s-17).
%F Sum_{n>=1} 1/a(n) = zeta(17) = A013675. (End)
%F Sum_{n>=1} (-1)^(n+1)/a(n) = 65535*zeta(17)/65536. - _Amiram Eldar_, Oct 09 2020
%t Range[0,15]^17 (* _Harvey P. Dale_, Sep 14 2011 *)
%o (Magma) [n^17: n in [0..15]]; // _Vincenzo Librandi_, Jun 19 2011
%o (PARI) for(n=0,15,print1(n^17,", ")) \\ _Derek Orr_, Feb 27 2017
%Y Cf. A013675.
%K nonn,mult,easy
%O 0,3
%A _N. J. A. Sloane_.