The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A268335 Exponentially odd numbers. 26

%I

%S 1,2,3,5,6,7,8,10,11,13,14,15,17,19,21,22,23,24,26,27,29,30,31,32,33,

%T 34,35,37,38,39,40,41,42,43,46,47,51,53,54,55,56,57,58,59,61,62,65,66,

%U 67,69,70,71,73,74,77,78,79,82,83,85,86,87,88,89,91,93,94,95,96,97

%N Exponentially odd numbers.

%C The sequence is formed by 1 and the numbers whose prime power factorization contains only odd exponents.

%C The density of the sequence is the constant given by A065463.

%C Except for the first term the same as A002035. - _R. J. Mathar_, Feb 07 2016

%C Also numbers k all of whose divisors are bi-unitary divisors (i.e., A286324(k) = A000005(k)). - _Amiram Eldar_, Dec 19 2018

%H Peter J. C. Moses, <a href="/A268335/b268335.txt">Table of n, a(n) for n = 1..2000</a>

%H Vladimir Shevelev, <a href="http://arxiv.org/abs/1510.05914">Exponentially S-numbers</a>, arXiv:1510.05914 [math.NT], 2015.

%H Vladimir Shevelev, <a href="http://arxiv.org/abs/1511.03860">Set of all densities of exponentially S-numbers</a>, arXiv preprint arXiv:1511.03860 [math.NT], 2015.

%H Vladimir Shevelev, <a href="http://dx.doi.org/10.4064/aa8395-5-2016">S-exponential numbers</a>, Acta Arithmetica, Vol. 175(2016), 385-395.

%F Sum_{a(n)<=x} 1 = C*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c = 4*sqrt(2.4/log 2) = 7.44308... and C = Product_{prime p} (1 - 1/p*(p + 1)) = 0.7044422009991... (A065463).

%t Select[Range@ 100, AllTrue[Last /@ FactorInteger@ #, OddQ] &] (* Version 10, or *)

%t Select[Range@ 100, Times @@ Boole[OddQ /@ Last /@ FactorInteger@ #] == 1 &] (* _Michael De Vlieger_, Feb 02 2016 *)

%o (PARI) isok(n)=my(f = factor(n)); for (k=1, #f~, if (!(f[k,2] % 2), return (0))); 1; \\ _Michel Marcus_, Feb 02 2016

%Y Cf. A002035, A209061, A138302, A197680, A000578, A000584, A001014, A001017, A008456, A010803, A010805, A010806, A010808, A010811, A010812, A001221, A124010.

%K nonn

%O 1,2

%A _Vladimir Shevelev_, Feb 01 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 14:41 EDT 2021. Contains 343177 sequences. (Running on oeis4.)