login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Exponentially odd numbers.
110

%I #62 Jan 22 2024 01:23:43

%S 1,2,3,5,6,7,8,10,11,13,14,15,17,19,21,22,23,24,26,27,29,30,31,32,33,

%T 34,35,37,38,39,40,41,42,43,46,47,51,53,54,55,56,57,58,59,61,62,65,66,

%U 67,69,70,71,73,74,77,78,79,82,83,85,86,87,88,89,91,93,94,95,96,97

%N Exponentially odd numbers.

%C The sequence is formed by 1 and the numbers whose prime power factorization contains only odd exponents.

%C The density of the sequence is the constant given by A065463.

%C Except for the first term the same as A002035. - _R. J. Mathar_, Feb 07 2016

%C Also numbers k all of whose divisors are bi-unitary divisors (i.e., A286324(k) = A000005(k)). - _Amiram Eldar_, Dec 19 2018

%C The term "exponentially odd integers" was apparently coined by Cohen (1960). These numbers were also called "unitarily 2-free", or "2-skew", by Cohen (1961). - _Amiram Eldar_, Jan 22 2024

%H Peter J. C. Moses, <a href="/A268335/b268335.txt">Table of n, a(n) for n = 1..2000</a>

%H Eckford Cohen, <a href="https://eudml.org/doc/169870">Arithmetical functions associated with the unitary divisors of an integer</a>, Mathematische Zeitschrift, Vol. 74 (1960), pp. 66-80.

%H Eckford Cohen, <a href="http://pub.acta.hu/acta/showCustomerArticle.action?id=7038&amp;dataObjectType=article&amp;returnAction=showCustomerVolume&amp;sessionDataSetId=3fe5dd60a67f39f9">Some sets of integers related to the k-free integers</a>, Acta Sci. Math. (Szeged), Vol. 22, No. 3-4 (1961), pp. 223-233.

%H Vladimir Shevelev, <a href="http://arxiv.org/abs/1510.05914">Exponentially S-numbers</a>, arXiv:1510.05914 [math.NT], 2015.

%H Vladimir Shevelev, <a href="http://arxiv.org/abs/1511.03860">Set of all densities of exponentially S-numbers</a>, arXiv preprint arXiv:1511.03860 [math.NT], 2015.

%H Vladimir Shevelev, <a href="http://dx.doi.org/10.4064/aa8395-5-2016">S-exponential numbers</a>, Acta Arithmetica, Vol. 175(2016), 385-395.

%H D. Suryanarayana and R. Sita Rama Chandra Rao, <a href="https://doi.org/10.1017/S1446788700020425">Distribution of unitarily k-free integers</a>, Journal of the Australian Mathematical Society, Vol. 20 , No. 2 (1975), pp. 129-141.

%F Sum_{a(n)<=x} 1 = C*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c = 4*sqrt(2.4/log 2) = 7.44308... and C = Product_{prime p} (1 - 1/p*(p + 1)) = 0.7044422009991... (A065463).

%F Sum_{n>=1} 1/a(n)^s = zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s)), s>1. - _Amiram Eldar_, Sep 26 2023

%t Select[Range@ 100, AllTrue[Last /@ FactorInteger@ #, OddQ] &] (* Version 10, or *)

%t Select[Range@ 100, Times @@ Boole[OddQ /@ Last /@ FactorInteger@ #] == 1 &] (* _Michael De Vlieger_, Feb 02 2016 *)

%o (PARI) isok(n)=my(f = factor(n)); for (k=1, #f~, if (!(f[k,2] % 2), return (0))); 1; \\ _Michel Marcus_, Feb 02 2016

%o (Python)

%o from itertools import count, islice

%o from sympy import factorint

%o def A268335_gen(startvalue=1): # generator of terms >= startvalue

%o return filter(lambda n:all(e&1 for e in factorint(n).values()),count(max(startvalue,1)))

%o A268335_list = list(islice(A268335_gen(),20)) # _Chai Wah Wu_, Jun 22 2023

%Y Cf. A002035, A209061, A138302, A197680, A000578, A000584, A001014, A001017, A008456, A010803, A010805, A010806, A010808, A010811, A010812, A001221, A124010.

%K nonn

%O 1,2

%A _Vladimir Shevelev_, Feb 01 2016