login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379718
The second Jordan totient function applied to the cubefull numbers: a(n) = A007434(A036966(n)).
6
1, 48, 192, 648, 768, 3072, 5832, 15000, 12288, 31104, 52488, 49152, 115248, 124416, 196608, 375000, 279936, 472392, 497664, 720000, 786432, 1119744, 1756920, 1990656, 2519424, 2880000, 3145728, 4251528, 4798248, 5647152, 4478976, 5531904, 9375000, 9720000, 7962624
OFFSET
1,2
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = zeta(2)^2 * Product_{p prime} (1 - 2/p^2 + 1/p^4 + 1/p^6) = 1.02964361441212748276... .
In general, Sum_{m cubefull} 1/J_k(m) = zeta(k)^2 * Product_{p prime} (1 - 2/p^k + 1/p^(2*k) + 1/p^(3*k)), for k >= 2, where J_k is the k-th Jordan totient function.
In general, Sum_{m k-full} 1/J_2(m) = zeta(2)^2 * Product_{p prime} (1 - 2/p^2 + 1/p^4 + 1/p^(2*k)), for k >= 2.
MATHEMATICA
f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; Join[{1}, j2 /@ Select[Range[20000], AllTrue[Last /@ FactorInteger[#], #1 > 2 &] &]]
PROG
(PARI) j2(f) = prod(i = 1, #f~, (f[i, 1]^2 - 1) * f[i, 1]^(2*f[i, 2] - 2));
list(lim) = {my(f); print1(1, ", "); for(k = 2, lim, f = factor(k); if(vecmin(f[, 2]) > 2, print1(j2(f), ", "))); }
CROSSREFS
Cf. A007434, A013661, A036966, A371412 (analogous with J_1 = phi), A379715, A379716, A379717.
Sequence in context: A210250 A259038 A231174 * A259245 A157923 A296367
KEYWORD
nonn,easy,new
AUTHOR
Amiram Eldar, Dec 31 2024
STATUS
approved