OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
Sum_{n>=1} 1/a(n) = zeta(2)^2 * Product_{p prime} (1 - 2/p^2 + 1/p^4 + 1/p^6) = 1.02964361441212748276... .
In general, Sum_{m cubefull} 1/J_k(m) = zeta(k)^2 * Product_{p prime} (1 - 2/p^k + 1/p^(2*k) + 1/p^(3*k)), for k >= 2, where J_k is the k-th Jordan totient function.
In general, Sum_{m k-full} 1/J_2(m) = zeta(2)^2 * Product_{p prime} (1 - 2/p^2 + 1/p^4 + 1/p^(2*k)), for k >= 2.
MATHEMATICA
f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; Join[{1}, j2 /@ Select[Range[20000], AllTrue[Last /@ FactorInteger[#], #1 > 2 &] &]]
PROG
(PARI) j2(f) = prod(i = 1, #f~, (f[i, 1]^2 - 1) * f[i, 1]^(2*f[i, 2] - 2));
list(lim) = {my(f); print1(1, ", "); for(k = 2, lim, f = factor(k); if(vecmin(f[, 2]) > 2, print1(j2(f), ", "))); }
CROSSREFS
KEYWORD
nonn,easy,new
AUTHOR
Amiram Eldar, Dec 31 2024
STATUS
approved