login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The second Jordan totient function applied to the cubefull numbers: a(n) = A007434(A036966(n)).
6

%I #10 Jan 01 2025 14:42:01

%S 1,48,192,648,768,3072,5832,15000,12288,31104,52488,49152,115248,

%T 124416,196608,375000,279936,472392,497664,720000,786432,1119744,

%U 1756920,1990656,2519424,2880000,3145728,4251528,4798248,5647152,4478976,5531904,9375000,9720000,7962624

%N The second Jordan totient function applied to the cubefull numbers: a(n) = A007434(A036966(n)).

%H Amiram Eldar, <a href="/A379718/b379718.txt">Table of n, a(n) for n = 1..10000</a>

%F Sum_{n>=1} 1/a(n) = zeta(2)^2 * Product_{p prime} (1 - 2/p^2 + 1/p^4 + 1/p^6) = 1.02964361441212748276... .

%F In general, Sum_{m cubefull} 1/J_k(m) = zeta(k)^2 * Product_{p prime} (1 - 2/p^k + 1/p^(2*k) + 1/p^(3*k)), for k >= 2, where J_k is the k-th Jordan totient function.

%F In general, Sum_{m k-full} 1/J_2(m) = zeta(2)^2 * Product_{p prime} (1 - 2/p^2 + 1/p^4 + 1/p^(2*k)), for k >= 2.

%t f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; Join[{1}, j2 /@ Select[Range[20000], AllTrue[Last /@ FactorInteger[#], #1 > 2 &] &]]

%o (PARI) j2(f) = prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(2*f[i,2] - 2));

%o list(lim) = {my(f); print1(1, ", "); for(k = 2, lim, f = factor(k); if(vecmin(f[, 2]) > 2, print1(j2(f), ", "))); }

%Y Cf. A007434, A013661, A036966, A371412 (analogous with J_1 = phi), A379715, A379716, A379717.

%K nonn,easy,new

%O 1,2

%A _Amiram Eldar_, Dec 31 2024