login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157923
a(n) = 49*n^2 - n.
2
48, 194, 438, 780, 1220, 1758, 2394, 3128, 3960, 4890, 5918, 7044, 8268, 9590, 11010, 12528, 14144, 15858, 17670, 19580, 21588, 23694, 25898, 28200, 30600, 33098, 35694, 38388, 41180, 44070, 47058, 50144, 53328, 56610, 59990, 63468, 67044
OFFSET
1,1
COMMENTS
The identity (98n - 1)^2 - (49n^2 - n)*14^2 = 1 can be written as A157924(n)^2 - a(n)*14^2 = 1. - Vincenzo Librandi, Feb 05 2012
LINKS
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(7^2*t-1)).
FORMULA
G.f.: x*(-48-50*x)/(x-1)^3. - Vincenzo Librandi, Feb 05 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 05 2012
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {48, 194, 438}, 50] (* Vincenzo Librandi, Feb 05 2012 *)
PROG
(Magma) I:=[48, 194, 438]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 05 2012
(PARI) for(n=1, 40, print1(49*n^2 - n", ")); \\ Vincenzo Librandi, Feb 05 2012
CROSSREFS
Cf. A157924.
Sequence in context: A259038 A231174 A259245 * A296367 A275507 A072254
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 09 2009
STATUS
approved